
Simulation Analysis of Data Sharing
in Shared Memory Multiprocessors

By

Susan Jane Eggers

B.A. (Connecticut College) 1965

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCfOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

GRADUATE DMSION

of the

UNIVERSITY OF CALIFORNIA at BERKELEY

/,7

..... d ..

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Simulation Analysis of Data Sharing in Shared Memory Multiprocessors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This dissertation examines shared memory reference patterns in parallel programs that run on bus-based,
shared memory multiprocessors. The study reveals two distinct modes of sharing behavior. In sequential
sharing, a processor makes multiple, sequential writes to the words within a block, uninterrupted by
accesses from other processors. Under fine-grain sharing, processors contend for these words, and the
number of per-processor sequential writes is low. Whether a program exhibits sequential or fine-grain
sharing affects several factors relating to multiprocessor performance: the accuracy of sharing models that
predict cache coherency overhead, the cache miss ratio and bus utilization of parallel programs, and the
choice of coherency protocol. An architecture-independent model of write sharing was developed, based on
the inter-processor activity to write-shared data. The model was used to predict the relative coherency
overhead of write-invalidate and write-broadcast protocols. Architecturally detailed simulations validated
the model for write-broadcast. Successive refinements, incorporating architecture-dependent parameters,
most importantly cache block size, produced acceptable predictions for write-invalidate. Block size was
crucial for modeling write-invalidate, because the pattern of memory references within a block determines
protocol performance. The cache and bus behavior of parallel programs running under write-invalidate
protocols was evaluated over various block and cache sizes. The analysis determined the effect of shared
memory accesses on cache miss ratio and bus utilization by focusing on the sharing component of these
metrics. The studies show that parallel programs incur substantially higher miss ratios and bus utilization
than comparable uniprocessor programs. The sharing component of the metrics proportionally increases
with cache and block size, and for some cache configurations determines both their magnitude and trend.
Again, the amount of overhead depends on the memory reference pattern to the shared data. Programs
that exhibit sequential sharing perform better than those whose sharing is fine-grain. A cross-protocol
comparison provided empirical evidence of the performance loss caused by increasing block size in
write-invalidate protocols and cache size in write-broadcast. It then measured the extent to which read
broadcast improved write-invalidate performance and competitive snooping helped write-broadcast. The
results indicated that read-broadcast reduced the number of invalidation misses, but at a high cost in
processor lockout from the cache. The surprising net effect was an increase in total execution cycles.
Competitive snooping benefited only those programs that exhibited sequential sharing; both bus utilization
and total execution time dropped moderately. For programs characterized by fine-grain sharing,
competitive snooping degraded performance by causing a slight increase in these metrics.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

178

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SIMULATION ANALYSIS OF DATA SHARING
IN SHARED MEMORY MULTIPROCESSORS

Copyright © 1989

by

Susan J. Eggers

All rights reserved.

..

Simulation Analysis of Data Sharing

in Shared Memory Multiprocessors

Susan J. Eggers

Computer Science Division
University of California

Berkeley CA 94720

ABSTRACT

This dissertation examines shared memory reference patterns in parallel programs that run on bus­

based, shared memory multiprocessors. The study reveals two distinct modes of sharing behavior. In

sequen1ial sharing, a processor makes multiple, sequential writes to the words within a block, uninter­

rupted by accesses from other processors. Under fine-grain sharing, processors contend for these words,

and the number of per-processor sequential writes is low. Whether a program exhibits sequential or

fine-grain sharing affects several factors relating to multiprocessor performance: the accuracy of sharing

models that predict cache coherency overhead, the cache miss ratio and bus utilization of parallel pro­

grams, and the choice of coherency protocol.

An architecture-independent model of write sharing was developed, based on the inter-processor

activity to write-shared data. The model was used to predict the relative coherency overhead of write­

invalidate and write-broadcast protocols. Architecturally detailed simulations validated the model for

write-broadcasL Successive refinements, incorporating architecture-dependent parameters, most impor­

tantly cache block size, produced acceptable predictions for write-invalidate. Block size was crucial for

modeling write-invalidate, because the pattern of memory references within a block determines protocol

performance.

The cache and bus behavior of parallel programs running under write-invalidate protocols was

evaluated over various block and cache sizes. The analysis determined the effect of shared memory

accesses on cache miss ratio and bus utilization by focusing on the sharing component of these metrics.

The studies show that parallel programs incur substantially higher miss ratios and bus utilization than

comparable uniprocessor programs. The sharing component of the metrics proportionally increases with

cache and block size, and for some cache configurations determines both their magnitude and trend.

Again, the amount of overhead depends on the memory reference pattern to the shared data. Programs

that exhibit sequential sharing perform better than those whose sharing is fine-grain.

A cross-protocol comparison provided empirical evidence of the performance loss caused by

increasing block size in write-invalidate protocols and cache size in write-broadcasL It then measured

the extent to which read broadcast improved write-invalidate performance and competitive snooping

helped write-broadcasL The results indicated that read-broadcast reduced the number of invalidation

misses, but at a high cost in processor lockout from the cache. The surprising net·effect was an increase

in total execution cycles. Competitive snooping benefited only those programs that exhibited sequential

sharing; both bus utilization and total execution time dropped moderately. For programs characterized by

fine-grain sharing, competitive snooping degraded performance by causing a slight increase in these

me tries.

February 24, 1989

For my parents,
Jane Preston Morse Eggers

Harvey Heydom Eggers

II

Acknowledgements

Graduate school takes a sizable chunk of one's life and is an experience much broader than

researching and writing a dissertation. This acknowledgement is intended to thank those who helped me

in a multitude of ways and shared those years with me.

I received good technical guidance from both faculty and students. My advisor, Randy Katz, took

a chance on me when I looked like a dark horse. He gave me the opportunity to work on an exciting,

multi-disciplinary project with extremely bright and capable students. At the same time he taught me that

what I did with that opportunity was my responsibility. I am grateful for his counsel in matters that were

technical, editorial and academic.

I would also like to thank the other members of my committee, Alan Smith and Ronald Wolff.

Alan, in particular, provided insightful technical feedback that added greatly to the formulation of the

sharing analysis and enhanced the clarity of the dissertation.

My colleagues on the SPUR project and the prelim study group provided comradeship and good

technical conversations. Mark Hill, David Wood and Garth Gibson, in particular, were sounding boards

for many of the results in Chapters 4 through 6, and Mark read and commented on the other chapters as

well. Corinna Lee was my constant buddy in many areas; David Ditzel and George Taylor my anchors.

These students and a few others were all members of "my dear lunch bunch", the crew with whom I spent

so much of my graduate experience. It is memories of them that will make me tell my own students,

while they roll their eyes in great disbelief (as I rolled mine, when Dave Patterson said this to me), that

my graduate student days were the best in my life.

I would also like to thank those who provided the resources necessary for completing the empirical

portions of the work. Andrea Casotto (CELL), Steve McGrogan (SPICE), Srinivas Devadas (TOPOP1)

and Hi-Keung Tony Ma (VERIFY) donated the parallel programs and a considerable portion of their time

discussing them. John Sanguinetti wrote the ELXSI tace generator; Dianne DeSousa helped with gen­

erating the ELXSI trace; Sequent provided the software on which the Sequent trace generator was based;

and Frank Lacy generated and postprocessed the Sequent traces. Dominica Ferrari and Yale Patt pro­

vided resources for running many of the simulations. And Mark Manasse from Digital's Systems

Research Laboratory served as consultant on competitive snooping issues in Chapter 6.

The research was supported by an IBM Predoctoral Fellowship, SPUR/DARPA contract No.

N00039-85-C-0269, :!'\SF grant No. 83-52227, Digital Equipment Corporation, and California MICRO

(in conjunction with Texas Instruments, Xerox, Honeywell, and Philips/Signetics).

The last acknowledgement is rather unusual, but, on the other hand, so was I -- twenty years older

than my fellow students, and a member of the minority sex. In the late nineteen sixties and early seven­

ties I became involved in the resurgent women's movemenL The experience taught me that women

raised with the ideals of the fifties could still carve careers and live independent lives. Without that polit­

ical message, the others in the movement, and the attitude they engendered, I would never have been here

in the first place. I owe them a broadening of my life that was worth every sacrifice.

Table of Contents

CHAPTER 1. Introduction

1.1. Motivation for this Dissertation
1.2. Organization of the Dissertation
1.3. Research Contributions
1.4. References

CHAPTER 2. The Cache Coherency Protocols

2.1. Introduction
2.2. The Software Protocols
2.3. The Centralized Hardware Protocols
2.4. The Distributed Hardware Protocols
2.4.1. Overview
2.4.2. The Write-Invalidate Protocols
2.4.3. The Write-Broadcast Protocols
2.4.4. IEEE Oassification of Distributed, Hardware Protocols

2.5. Initial Perfonnance Studies
2.6. Critique of Previous Swdies
2. 7. References

CHAPTER 3. Methodology

3.1. Introduction
3.2. Trace-driven Simulation
3.3. The Traces
3.4. Trace Postprocessing
3.4.1 Detecting and Processing Sharing in the Parallel Traces

3.4.2 Trace Compaction Using a Cache Filter for Parallel Traces

3.5. The Multiprocessor Simulator
3.5.1. Its Underlying Architecture
3.5.2. Implementation of the Simulator
3.5.3. Using the Traces
3.5.4. Multiprocessor Debugging Techniques
3.5.5. Summary
3.6. References

CHAPTER 4. The Write Run Model

4.1. Introduction
4.2. Write-Invalidate and Write-Broadcast Coherency Protocols

4.3. A Characterization of Sharing and the Sharing Metrics
4.3.1. The Characterization

1

1
5
8

10

11

11
12
17
19
19
20
26
28
28
34
37

41

41
43
44
49
49
52
55
55
56
57
59
60
61

63

63
65
67
67

iii

iv

4.3.2. The Write Run Metrics 70

4.3.3. Applying the Metrics 71

4.4. Sharing Analysis Criteria 73

4.4.1. Architecture/Implementation Independence 74

4.4.2. Coherency Protocol Independence 75

4.4.3. Synchronization 75

4.5. Results of the Sharing Analysis 76

4.6. The Write Run Model 82

4.7. Architecture Independent Simulations of Snooping Protocols 89

4.8. The Coherency Block Write Run Model 96

4.9. Chapter Summary 104

4.10. References 106

CHAPTER S. The Effect of Sharing on the Cache and Bus Performance of

Parallel Programs 107

5.1. Introduction 107

5.2. The Effect of Sharing on Miss Ratios 109

5.2.1. Varying Block Size 109

5.2.2. Varying Cache Size 114

5.3. The Effect of Sharing on Bus Utilization 118

5.3.1. Varying Block Size 119

5.3.2. Varying Cache Size 119

5.4. Concluding Discussion 124

5 .4.1. Implications for Cache and Bus Designers 124

5.4.2. Implications for Parallel Software Writers 126

5.5. References 129

CHAPTER 6. Evaluating the Performance of Four Snooping Cache Coherency

Protocols 130

6.1. Introduction 130

6.2. The Write-Invalidate Protocols 132

6.2.1. The Write-Invalidate Trouble Spot 132

6.2.2. Empirical Evidence for the Trouble Spot 133

6.3. The Read-Broadcast Extension 134

6.3.1. Protocol Description 134

6.3.2. Read-Broadcast Results 135

6.3.2.1. The Benefits to Miss Ratio and Bus Utilization 135

6.3.2.2. The Cost in Per Processor and System Throughput 139

6.3.3. Write-Invalidate/Read-Broadcast Summary 142

6.4. The Write-Broadcast Protocols 143

6.4.1. The Write-Broadcast Trouble Spot 143

6.4.2. Empirical Support for the Trouble Spot 143

6.5. Competitive Snooping 146

6.5.1. Protocol Description 146

6.5.2. Competitive Snooping Results 148

6.5.3. Write-Broadcast/Competitive Snooping Summary 151

6.6. Chapter Summary 151

v

6.7. References
154

CHAPTER 7. Summary and Conclusions 155

vi

List of Figures

CHAPTER 1. Introduction
1

1-1 Bus-based, Shared Memory Multiprocessor
2

CHAPTER 3. Methodology
41

3-1 A ow Chan of the Programming Paradigm of the Parallel Traces 4 7

CHAPTER 4. The Write Run Model
63

4-1 Example Write Run for a Shared Address
68

4-2 Model of Sharing Based on Write Runs
84

4-3 Write Run Sharing Model for Berkeley Ownership 86

4-4 Write Run Sharing Model for the Firefly
87

4-5 Methodology
87

4-6 Sequential Sharing
93

4-7 Fme-Grain Sharing (for Writers)
94

4-8 Fme-Grain Sharing (for Readers)
95

CHAPTERS. The Effect of Sharing on the Cache and Bus Performance of

Parallel Programs
107

5-1 Miss Ratio
110

5-2 Shared Miss Ratio
110

5-3 Uniprocessor Component of the Miss Ratio
Ill

5-4 Ratio of Invalidation Misses to Total Misses
111

5-5 Oassification of Misses for CELL
113

5-6 Oassification of Misses for SPICE
113

5-7 Oassification of Misses for TOPOPT
114

5-8 Oassification of Misses for VERIFY
114

5-9 Miss Ratio
115

5-10 Classification of Misses for TOPOPT
115

5-11 Oassification of Misses for VERIFY
116

5-12 Ratio of Invalidation Misses to Total Misses
116

5-13 Effect of Block Size on Bus Utilization
120

5-14 Ratio of Sharing Bus Cycles to Total Bus Cycles 120

5-15 Oassification of Bus Cycles for TOPOPT
122

5-16 Classification of Bus Cycles for SPICE
122

5-17 Effect of Cache Size on Bus Utilization
123

5-18 Uniprocessor Bus Utilization
123

5-19 Ratio of Sharing Bus Cycles to Total Bus Cycles 123

vii

CHAPTER 6. Evaluating the Performance of Four Snooping Cache Coherency

Protocols 130

6-1 Ratio of Invalidation Misses to Total Misses for Berkeley Ownership 137

6-2 Ratio of Invalidation Misses to Total Misses for Read-Broadcast 137

6-3 Write-Broadcasts to Shared Data under Firefly 144

6-4 Bus Utilization under Firefly 144

6-5 Bus Cycles for CELL under Firefly 145

6-6 Ratio of Broadcast Cycles to Total Bus Cycles 145

viii

List of Tables

CHAPTER 2. The Cache Coherency Protocols 11

2-1 Software Coherency Protocol Summary 16

2-2 Centralized Coherency Protocol Summary 19

2-3 Summary of the Distributed, Hardware Coherency Protocols 21

CHAPTER 3. Methodology 41

3-1 Traces used in the Simulations 44

CHAPTER 4. The Write Run Model 63

4-1 Sharing Metrics Based on Write Runs 71

4-2 Basic Trace Statistics 77

4-3 Shared Data Trace Statistics 77

4-4 Length of the Write Runs 78

4-5 Number of External Rereads Following a Write Run 79

4-6 Sharing Ratio 81

4-7 Number of Busywaiters 81

4-8 Cost of Transitions for Berkeley Ownership and Firefly 85

4-9 Write Run Model Comparison of Berkeley Ownership & Firefly 88

4-10 Comparison of Berkeley Ownership & Firefly in Realistic Simulations 88

4-11 Comparison of Write Run Model to Realistic Simulations 91

4-12 Coherency Block Write Run Model Comparison of Berkeley Ownership

&~~ ~

4-13 Comparison of Realistic Simulations to the Write Run Models 97

4-14 Leng-Jl of the Coherency Block Write Runs 99

4-15 Number ofExtemal Rereads Following a Write Run

(Coherency Block Model) 100

4-16 Sharing Ratio (Coherency Block Model) 100

CHAPTER 5. The Effect of Sharing on the Cache and Bus Performance of

Parallel Programs 107

5-1 Percentage Change in Miss Ratio with Increasing Cache Size 118

CHAPTER 6. Evaluating the Perfonnance of Four Snooping Cache Coherency

Protocols 130

6-1 Comparison of Invalidation Misses and Miss Ratio for

Berkeley Ownership and Read-Broadcast 136

6-2 Comparison of Bus Utilization for Berkeley Ownership and Read-Broadcast 138

ix

6-3 Comparison of Write-Broadcasts for Firefly and Competitive Snooping 149

6-4 Comparison of Sharing Cycles for Firefly and Competitive Snooping 150

6-5 Comparison of Bus Utilization & Total Execution Cycles for Firefly and

Competitive Snooping 152

1 Introduction

1.1. Motivation for this Dissertation

Shared memory multiprocessors are emerging as an important class of computer systems

fHill86, Olso85,Rose85, Thac88, Thak88]. One of the goals of this architecture is to improve

performance by executing a single, parallel program on multiple processors. The programs

share data and communicate with one another through a common main memory. The primary

advantage of the shared memory is that it furnishes the programmer with the simplest parallel

programming model, that of a single-level of globally accessible memory.1 But because it is a

single resource, used by all processors, it is a critical performance bottleneck.

The simplest shared memory architecture is one in which all processors a..11.d main memory

are connected via a single system bus. (Figure 1-1 depicts a bus-based, shared memory mul-

1 There are other advantages, of course. A major one is the ability to emulate other parallel processing memory

organizations, such liS message p~sing architeCtures.

2

tiprocessor.) This bus is the only communication path from the processors to memory, and

among the processors. Therefore it is even a greater point of contention than main memory.

The bus bandwidth determines how many processors the bus can support. Queueing delays in

reaching memory via the bus can substantially increase memory access time and therefore pro-

gram throughput.

Processor caches reduce the bandwidth demands on the system bus and shared memory

[Good87b] by providing a distributed version of the single, shared memory resource. However,

since multiple processors can now update different copies of the shared data, an additional prob-

lem of keeping all the versions consistent is introduced. Cache coherency (consistency) proto-

Memory

u
I The System Bus j

tt tt u
Cache 1 Cache 2 0 0 0 Cache N

Figure 1-1: Bus-based, Shared Memory Multiprocessor

In a bus-based, shared memory multiprocessor all processor nodes and main memory are connected to a

common system bus. This bus is the only hardware by which the processors may communicate with each

other and with main memory. Therefore, despite the CPU caches, it is likely to cause the performance

bottleneck.

3

cols describe operations for reading and writing shared memory that guarantee that a consistent

view is maintained, i.e., a system with distributed caches behaves like one without them.

Should multiple writes to a shared memory location occur simultaneously, it should be the case

that (1) a value received on a memory read is the update of the last write to that location, and

(2) the behavior of the coherency protocol is always predictable, i.e., no race conditions exist.

Numerous coherency protocols have been developed, both in hardware and software.

Many were designed to provide good perfozmance, usually meaning minimal additional bus

traffic, under particular sharing conditions. For example, the goal of the write-broadcast proto­

cols was to generate few additional bus operations when multiple processors were actively con­

tending for the same shared addresses. Models of multiprocessor activity were also constructed

to study the perfozmance of several of the protocols.

All coherency protocols and multiprocessor models were developed in the absence of any

real knowledge about the sharing behavior of parallel programs. Individual protocol optimiza­

tions were made, based solely on hypothetical assumptions of the sharing activity of these pro­

grams. The multiprocessor modeling was based on a workload model in which memory

accesses to write-shared data were independent and unifozmly distributed across all processors.

If parallel program behavior deviates from the assumed behavior, then modeling results will

mislead machine designers, and protocols will be adopted that produce less than optimal perfor­

mance in actual machines.

The research in this dissertation takes the opposite approach. The tnitial goal of the work

was to study the sharing behavior of parallel programs. Beginning with an analysis of actual

program behavior has two benefits. First, it provides an understanding and char .::terization of

the patterns of sharing before making a judgement about protocol and multiprocessor cache

design. Second, the analysis of sharir.g is based on a real, rather than hypothetical workload, so

4

that the results are more representative of actual machine behavior.2

In some cases the results I shall present contradict previous conclusions about the merits

of individual protocols and optimal cache organizations for multiprocessors. For example, con-

ventional wisdom postulated that per-processor locality of reference for shared data was low

[Arch86, Dubo82, Sega84, Vem86], and that any sharing in parallel programs would be charac-

terized by inter-processor contention for shared blocks. Therefore, among the distributed,

hardware protocols, it was predicted that write-broadcast protocols, which behave well under

periods of contention, would have the least coherency-related bus traffic. And conversely,

write-invalidate schemes would perform less well, presumably because of repeated misses on

invalidated data. Results in this dissertation clearly demonstrate that there is a wider spectrum

of sharing behavior in parallel programs than was assumed. Some programs do exhibit t.ne

hypothesized contention for shared addresses. However, others access blocks in a more sequen-

tial fashion, with one processor completing several accesses before another references the data.

In other words, for many parallel programs there is good per-processor locality for shared data.

For these programs, write-invalidate protocols are the better match; they generate both fewer

cache misses and less bus traffic than write-broadcast.

Similar conclusions were made about the optimal cache block size for multiprocessor

caches [Good83, Papa85, Sega84, Thac88, Vern86], the merits of read-broadcast protocols

[Good87a, Sega84] and the insignificant effect of processor lockout from the cache on the

overall performance of the snoopi.."1g protocols. (The latter is inferred from the ~ole emphasis on

minimizing bus traffic [Good83, .Katz85, Papa85, Sega84, Thac88].) In all cases, results in this

dissertation show that the inaccurate or simplified assumptions about the sharing behavior of the

workload led to misleading or inaccurate results.

2 ~ in all experimental research. the results are based on a finite amount of data, in this case traces of parallel

programs. A different workload, for example, a larger number of programs, or a different application area, may pro­

duce dissimilar results.

••• •
'"

5

Because of the presumption of poor locality of reference of shared data, it was postulated

that large block sizes, a factor in obtaining good uniprocessor performance, would lower perfor-

mance for parallel programs. My results show that for programs with sequential sharing, a large

block size improves performance. In actuality, the optimal block size depends on the pattern of

sharing within the cache block, in particular, whether it is sequential or fine-grain, rather than

following a "the smaller, the better" rule.

Read-broadcast protocols allow caches that had previously invalidated data to refill their

caches while the data is being bus transferred on another processor's read. The technique is

considered to be a performance optimization, because it avoids all misses on invalidated data

after the first. Results in this dissertation have found that, while read-broadcast does, in fact,

reduce bus traffic, it can cause a loss in program throughput because it locks the processor from

its cache. For some types of sharing behavior, protocols that increase processor lockout from

the cache in order to reduce bus traffic can have worse overall perfonnance than those that make

the alternative tradeoff.

1.2. Organization of the Dissertation

The remainder of !.he dissertation is organized as follows. Chapter 2 contains a review of

the coherency protocol literature. The review provides the reader with a summary of all

coherency approaches, their advantages and drawbacks, and their distinctions from each other.

While most of the protocols are not explicitly studied in the dissertation, the review provides a

context for the development of those that are, namely, the write-invalidate and write-broadcast

protocols.3 Chapter 2 also contains a critique of published coherency protocol perfonnance stu-

dies, based on analytic modeling and parameterized simulation.

3 All terms will be defined and referenced where first discussed in detail.

6

Chapter 3 is a discussion of the methodology used in the dissenation research. All studies

were done by trace-driven simulation of four parallel programs. Traditional trace-driven simu­

lation techniques had to be extended in several ways to accommodate parallel processing

requirements. For example, the traces had to be postprocessed to identify shared variables and

inter-processor synchronization points. The resulting postprocessed traces were then too large

for conventional disk storage; therefore a cache filter, specially cesigned for traces of parallel

programs, was developed to compress them. Debugging the multiprocessor simulator was more

difficult than developing uniprocessor simulators, because of the asynchronous nature of gen­

erating and satisfying global memory requests. Techniques were developed to trap system-wide

debugging errors as they occurred dynamically, to prevent the incorrect actions of one processor

from perturbing the behavior of others.

Chapter 4 develops a model of sharing that is used to detennine the pattern of memory

references to shared data, and the relative perfonnance of write-invalidate and write-broadcast

coherency protocols. There are three components to the development. The first characterizes

those aspects of sharing that are important in measuring bus-related coherency overnead and

defines metrics to reflect the characterization. Second, the characterization becomes the basis

for an architecture-inciependent version of the model. Comparisons to simulation results verify

this model's accuracy for the write-broadcast protocols. Finally, by progressively refining the

moctel by incorporating specific cache parameters, most importantly, the size of the cache block,

the model becomes a good predictor of coherency overnead for write-invalidate protocols as

well.

The model development revealed two distinct modes of sharing behavior in the programs.

In the first, sequential sharing, a particular processor makes multiple, sequential writes to the

words within a block, uninterrupted by accesses from other processors. In the other, fine-grain

sharing, processors contend for one or more words within the block and the number of per­

processor sequential writes is very low. The results demonstrate that whether a program

7

exhibits sequential or fine-grain sharing affects the amount of coherency overhead incurred

under a particular protocol, and with a panicular block size.

Chapter 5 evaluates the cache and bus behavior of parallel programs under write­

invalidate protocols over various block and cache sizes. The analysis determines the effect of

shared memory accesses on both cache miss ratio and bus utilization by focusing on the sharing

component of these metrics. The studies show that parallel programs incur substantially higher

miss ratios and bus utilization than comparable uniprocessor programs. The sharing component

of the metrics proportionally increases with both cache and block size, and for some cache

configurations determines both their magnitude and trend. Again, the amount of overhead

depends on the memory reference pattern to the shared data. Programs that exhibit sequential

sharing perform better than those with fine-grain sharing. This suggests that writers of parallel

software, in conjunction with better compiler technology, can improve program performance

through better memory organization of shared data.

Both write-invalidate and write-broadcast protocols have been criticized for being unable

to achieve good bus performance across all cache configurations. In particular, write-invalidate

p;;:-formance can suffer as block size increases; and large cache sizes will hurt write-broadcast.

Read-broadcast and competitive snooping extensions to the protocols have been proposed to

solve each problem. Chapter 6 provides empirical evidence of the performance loss caused by

increasing the block size in write-invalidate protocols and the cache size in write-broadcast. It

then measures the extent to which the solutions improve performance.

The results indicate that their benefits are limited. Read-broadcast reduces the number of

invalidation misses, but at a high cost in processor lockout from its cache. The net effect can be

an increase in total execution cycles. The competitive snooping protocol benefits only those

programs whose memory reference pattern to shared data is one of sequential sharing. For pro­

grams characterized by inter-processor contention for shared addresses, competitive snooping

8

can degrade perfonnance by causing a slight increase in bus utilization and total execution time.

The dissertation concludes in Chapter 7 with a summary of the research results, a discus­

sion of the importance of the pattern of shared references in determining parallel program

behavior and an outline of future research directions.

1.3. Research Contributions

Research contributions have come from both the research methodology and the results

themselves. First, when the research was begun, there were no parallel traces available for

analysis. The collection of multiprocessor traces that were generated for these studies have

become one of two available to the research community. Second, analysis of the traces led to

the development of a postprocessing methodology for synchronizing inter-processor memory

references and a specialized cache filter for compressing traces of parallel programs.

The remaining contributions relate to the dissertation results themselves. A model of

sharing, that incorporates per-processor locality of reference to shared data. was developed. Its

purpose was to determine a program's pattern of sharing and the cost of maintaining coherent

caches for write-broadcast and write-invalidate protocols. Although the model is quite simple,

it was validated for both protocols via trace-driven simulation.

An analysis of cache memory design for multiprocessor caches was done over a wide

range of cache and block sizes. The results pinpoint the additional cache misses and bus traffic

incurred by parallel programs, and the cache configurations required to support varying levels

of perfonnance.

The analysis of cache coherency protocols revealed which design options produced the

better perfonnance and under what types of workloads and particular cache configurations.

Fmally, and perhaps most importantly, the research highlighted the importance of sequen­

tial sharing behavior for minimizing coherency overhead and building accurate models of shar-

9

ing. The results were dramatic enough to warrant pursuing the development of prog'"3IIllller

and/or compiler techniques to deliberately construct parallel programs that share sequentially.

10

1.4. References

[Arch86] J. Archibald and J. Baer, "An Evaluation of Cache Coherence Solutions in

Shared-Bus Multiprocessors", ACM Transactions on Computer Systen:.s, 4, 4

(November 1986), 273-298.

[Dubo82] M. Dubois and F. A. Briggs, "Effects of Cache Coherency in Multiprocessors",

IEEE Transactions on Computers, C-31, 11 (November 1982), 1083-1099.

[Good83] J. R. Goodman, "Using Cache Memory to Reduce Processor-Memory Traffic",

Proceedings of the lOth Annual lnterTUJtional Symposium on Computer

Architecture, 11, 3 (June 1983), 124-131.

[Good87a] J. R. Goodman, "Coherency for Multiprocessor Virtual Address Caches",

Proceedings of the 2nd lnterTUJtional Conference on Architectural Support for

Progranuning Languages and Operating Systems, Palo Alto CA (October 1987),

72-81.

[Good87b] J. R. Goodman, "Cache Memory Optimization to Reduce Processor/Memory

Traffic", JourTUJl ofVLSI and Computer Systems, 2, 1 & 2 (1987), 61-86.

[Hill86] M.D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A.

Gibson, P.M. Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S.

A. Ritchie, D. A. WO<Xi, B. G. Zorn, P. N. Hilfinger, D. Hodges, R. H. Katz, J.

Ousterhout and D. A. Patterson, "SPUR: A VLSI Multiprocessor Workstation",

IEEE Computer, 19, 11 (November 1986), 8-22.

[Katz85] R. Katz, S. Eggers, D. Wood, C. L. Perkins and R. Sheldon, "Implementing a

Cache Consistency Protocol", Proceedings of the 12th Annual I nterTUJtioTUJl

Symposium on Computer Architecture, 13, 3 (June 1985), 276-283.

[0lso85] R. Olson, "Parallel Processing in a Message-Based Operating System", IEEE

Software (July 1985), 39-49.

[Papa85] M. S. Papamarcos and J. H. Patel, ''A Low-Overhead Coherence Solution for

Multiprocessors with Private Cache Memories'', Proceedings of the II th Annual

lnterTUltional Symposium on Computer Architecture, 12, 3 (January 1985), 348-

354.

[Rose85] C. D. Rose, "Encore Eyes Multiprocessor Market", Electronics (July 8, 1985),

118-119.

[Sega84] Z. Segall and L. Rudolph, "Dynamic Decentralized Cache Schemes for an MIMD

Parallel Processor", Proceedings of the 11th International Symposium on

Computer Architecture, 12, 3 (June 1984), 340-347.

[Thac38] C. P. Thacker, L. C. S~w~t and E. H. Satterthwaite, Jr.L "Firefly: A

Multiprocessor Workstation", IEEE Transactions on Computers, 37, 8 (August

1988), 909-920.

[Thak88] S. Thakkar, P. Gifford and G. Fielland, "The Balance Multiprocessor System",

IEEE Micro (February 1988), 57-69.

[Vem86] M. K. Vernon and M. A. Holliday, "Performance Analysis of Multiprocessor

Cache Consistency Protocols Using Generalized Timed Petri Nets", Proceedings

of Performance '86 andACM Sigmetrics 1986, Raleigh NC (May 1986), 9-17.

2

2.1. Introduction

The Cache Coherency

Protocols

11

Cache coherency protocols have been implemented both in software and hardware. In the

software protocols the programmer must identify all potentially shared objects, and for some

protocols the coherency operations as well, so that the operating system or compiler car1 take

appropriate steps (described below) to preserve consistency. For the simpler schemes the over­

head of maintaining consistency is incurred whether or not sharing actually takes place during

program execution. Recent advances in software protocols employ the automatic (compiler)

detection of the read/write pattern of shared data to reduce this overhead.

Hardware solutions free the programmer and compiler from the responsibility of specify­

ing coherency operations for the shared strJctures, and some incur the performance cost of

preserving ccherency only when the blocks are actively shared. These benefits occur at some

cost in the hardware complexity of the cache and/or memory controller. The control of the

12

hardware protocols can either be centralized at the memory controller, using a global state

directory, or be distributed among the caches and employ a snoop to track shared addresses.

A survey of all published protocols follows. Although only two classes of protocols, the

write-invalidate and write-broadcast protocols, will be used in the studies in Chapters 4 through

6, I include a brief but comprehensive survey to provide a context for their development. The

purpose of the survey is to (1) classify all coherency approaches and place particular protocols

into the classification; (2) pinpoint the main advantages and drawbacks of the various coherency

techniques; and (3) elucidate the most important distinctions between them. The reader is urged

to consult the references at the end of this chapter for more details on particular protocols.

2.2. The Software Protocols

The programmer-controlled mechanisms used by the software protocols to enforce

coherency are noncacheable pages, synchronization and cache flushing after critical sections.

Declaring a page "noncacheable" forces all references to the page to access memory, thereby

avoiding coherency problems altogether. The cost is an increase in bus traffic and slower exe­

cution, caused by the need to access memory on each shared data reference. Noncacheable

pages are implemented by hardware that checks a cacheability bit in the appropriate page table

entry during cache miss processing. If the bit is set, the block being referenced is passed

directly to the CPU; if cleared, the block is cached. Noncacheable pages are used on the ELXSI

6400 [McGr86, Olso85], the Honeywell 60/66 [Saty80], the NYU Ultracomputer [Edle85],

IBM's RP3 (which has also implemented temporarily cacheable pages) [Bran85, Pfis85], the

Intergraph Oipper [Neff86] and CMU's C.mmp [Full78].

An alternative approach requires a processor to access shared data via critical sections

protected by semaphores. The processor first sets the lock, then references the data (caching it),

and flushes the cache and releases the lock when finished. Normally the granularity of sharing

is the page (segments are also used), and therefore only the shared pages need to be flushed,

13

rather than the entire cache. In the ELXSI 6400 semaphores are obtained and the buffer for the

shared data is allocated through programmer-inserted operating systems calls. Since their

accepted programming convention allows for reading shared data without locking it, the cache

is flushed on lock as well as release.

Many systems, for example, the ELXSI 6400 and RP3, use a combination of the two

mechanisms: noncacheable pages for storing the semaphores, and critical sections for the appli-

cations shared data. In RP3 the semaphores are counters, and may be maintained either by

hardware or by busywaiting in software.

Early software protocols relied on programmer-specification of cacheable or noncacheable

data. More recent schemes use the compiler both to automatically detect potential coherency

violations and to prevent them by inserting either bypass-cache, or cache flush, invalidation or

"post" instructions. The compiler separates a program into units, often delineated by loop boun-

daries, that are intended to be executed in parallel The protocols differ in their treatment of

shared data within each unit In [Veid86] shared variables are cached, depending on the type of

loop (doall is cached, doacross is not1); and, if cached, the entire cache is invalidated (called

indiscriminate invalidation) after the unit has been executed, to prevent local reuse of the data.

The coherency overhead is therefore a function of the loop type and bounds, rather than the

number of processors or shared writes. In two other schemes the cacheable/noncacheable dis-

tinction is based on shared data usage. Shared variables are cacheable, if there are multiple

readers and eirher no writing processors [Lee87] or only one writer (RP3 ~d the Ultracomputer

[Bran85]). At the end of the unit's execution the [Lee87] scheme indiscriminately flushes the

cache, allowing a copy-back memory update policy. The RP3 and Ultracomputer have a write-

1 The type of loop is determined by the (data) dependence graph of the statements contained in iL Doallloops

do not contain any cross-iteration data dependencies; therefore their iterations can b.! executed concurrently on multi­

ple processors and their shared data can be cacned. Doacross loops contain at least one cross-iteration dependency.

Tills limits the concurrent execution of their iterations to a pipe lined fashion. and shared data cannot be cached. The

next iteration can be scheduled (on a different processor) after the the statements that contain the cross-iteration

dependencies have been e:r.:ecut.ed.

14

through policy; therefore their protocol can selectively invalidate (but in a single cycle) only the

shared variables. (Write-through was used in RP3 and the Ultracomputer, because the burst of

bus traffic caused by a cache flush caused more network delay in their multistage interconnec­

tion network than a steady, larger stream of write-through data [Edle85].)

The scheme proposed by Smith [Smit85] is a hardware optimization of the Ultracomputer

protocol. In this protocol One Time Identifiers are associated with each cache block and with

each page in the Translation Lookaside Buffer. A cache hit is determined by a comparison

between the cache identifier and the cache address tag and the TLB identifier and the address of

the memory reference. When the value of the TLB identifier is changed, the blocks on a partic­

ular page no longer hit, and the data becomes inaccessible. One Time Identifiers eliminate the

need to invalidate the cache one block at a time, but have the disadvantages that (1) the granu­

larity of shared objects is tied to the page and (2) reloading a replaced 1LB entry will cause

cache misses to its valid cache entries [Cheo88].

The three compiler-based protocols ([Bran85, Lee87, Veid86]) are conservative

approaches; they specify invalidations or flushing for all shared data usage, whether it is dynam­

ically required or not. Two other software protocols ([Cheo88, Cytr88]) were developed

specifically to improve upon these earlier schemes by eliminating unnecessary coherency opera­

tions. They achieved this at the cost of an increase in the amount of compiler analysis required,

and, for one, some hardware assist in the cache controller. [Cheo88] approximates constant-

time, but selective invalidations, through reference marking2 by source-speciftc (memory or

cache) reads of shared data and invalidation bits associated with each cache block. A bit is set

when the whole cache is invalidated (indiscriminately, in constant time), and cleared when its

block is reloaded. The selectivity is accomplished by the dual reads. The cache-read instruc­

tion always reads from the cache (whether the bit is set or not, ignoring the invalidation); it is

2 Reference marking tags each data reference as cacheable or noncacheable.

15

used when the compiler can guarantee that the cached data is current Its memory-read counter­

part reads from memory if the data is stale (the invalidation bit has been set) and otherwise from

the cache; it is used when the compiler cannot tell the exact order in which references will be

satisfied because of execution-time code scheduling on multiple processors. [Cytr88] obtains

the same accuracy, but without hardware assists. In addition to the flush and invalidate instruc­

tions, their protocol uses a "post" instruction, which writes data to memory, but omits the

invalidation. This allows the writing processor to continue referencing updated data in its

cache, and any readers to obtain the most current value. The authors are concerned with apply­

ing their technique to automatically parallelized sequential programs. Their analysis takes

advantage of the data and control dependency information generated by their parallelizing com­

piler (PTRAN [Alle88]) in order to generate as few coherency-related operations as possible.

For example, the compiler only places invalidations in execution .paths that contain a variable

assignment, and only inserts posts after a processor's last assignment to a variable.

The advantages of the software schemes are that (1) unlike most distributed, hardware

protocols, they don't require the broadcast capabilities of a shared bus, i.e .• they are appropriate

for more complex interconnection networks; (2) they avoid the runtime communication costs of

the centralized hardware schemes that can operate on interconnection networks; and (3) they

require little or no hariware support However, they have several drawbacks. First the sim­

plest schemes place the burden of specifying the shared structures and the synchronization

needed to handle them, and of debugging this code on the programmer. Secondly, software

protocols require that sharing take place via memory, i.e., they preclude sharing through the

cache-to-cache transfer mechanism of some of the distributed, hardware schemes (described

below), which can reduce bus traffic. Lastly, and most importantly, the source level

specification results in compiler generated (static) mechanisms for coherency enforcement The

compile time solution causes bus traffic to be generated whether it is required by the actual

16

Software Protocol Summarv
,,

Protocol Caching_ Policy Flush Policv Flush Determinant

ELXSI 6400 data type selective critical section

Clipper never
Honeywell60/66 never
NYU Ultracomputer processor usage selective program unit

IBMRP3 data type, proces- selective program unit

sor usage

CMUC.mmp never
[Veid86] loop type indiscriminate program unit

[Lee87] processor usage indiscriminate program unit

One Time Identifiers unspecified selective unspecified
(presumably pro-
gram unit)

[Cheo88] data type selective data dependency
analysis

[Cytr88] data type (presum- selective data/control

ably) dependency
analvsis

Table 2-1: Software Coherency Protocol Summary

This table contains a summary of the key differences among the software coherency protocols. The

column, Protocol, contains either a coherency technique or the machine on which a particular coherency

policy was implemented. Caching Policy specifies the criteria for allowing write-shared data to be

cached. "Never" indicates that all write-shared data is noncacheable; "data type" that applications shared

data is cacheable but locks are not; "processor usage" that cacheability depends on the number of readers

and writers; and "loop type" that doall variables are cacheable but doacross are not A "selective" Flush

Policy flushes only a portion of the cache (the exact portion is dependent on the protocol); an "indiscrim­

inate" one flushes the entire cache. Flush Determinant specifies when the flush is carried out. "Critical

section" indicates on termination of a critical section; "program unit", on termination of some other

compiler-determined unit of the program; "data dependency analysis" that flushing depends on the data

dependency graph for the shared variables; "control dependency analysis" that it is determined by the ex­

ecution path taken. The latter two approaches are also compiler-generated.

memory reference pattern to the shared data or not. The traffic appears in the form of memory

accesses for noncacheable data, cache flushing after critical sections or program units and

misses for data that have been needlessly flushed. (The latter is particularly expensive with the

indiscriminate techniques.) Even the schemes that rely on the compiler detection of coherency

violations suffer from this overhead. Within this group, the protocols that utilize reference

marking, augmented by either hardware assists or data and control dependency analysis, should

17

achieve the best performance. It is still undemonstrated just how close to actual dynan1ic per­

formance these protocols can come. (A classification summary of the software protocols

appears in Table 2-1.)

2.3. The Centralized Hardware Protocols

The first hardware cache coherency protocols had a centralized controller that was respon­

sible for maintaining consistency in all caches in the system. Cache transactions that could

affect data coherency emanated from this central controller and were reported to it by individual

caches. This included not only cache misses, but also those transactions that involved a change

of cache state, even when there was no transfer of data. Each cache notified the central con­

troller of any state change to a cached block, such as an update of a clean block. The controller

signaled the change to all other interested caches, in this case a directive to invalidate their

copy, and then transmitted permission to the requesting cache to modify the block. The central

controller also initiated all copy-backs before a read of dirty (private) data.

Cache directories associated with each cache contained state bits for each block in the

cache that determined whether there was a cache hit and whether a processor had permission to

write to the block. In addition, the central controller maintained a global directory that was

used in satisfying cache misses and enforcing coherency. The organization and content of the

global directory depended on the particular coherency protocol. In the first of the centralized

schemes developed, that of Tang [Tang76] (later implemented on the IBM 3081 [Gust82]), the

cache directories were duplicated in the central directory. The drawback of this design was the

global directory search required to locate all instances of a particular memory block. To elim­

inate the search time, other schemes maintained state that was associated with memory rather

than cache blocks. The protocol developed by Censier and Fautrier [Cens78], the LSCS (Logi­

cal Semi-Critical Section) protocol of Yen and Fu [Yen82] and the protocol implemented in the

S 1 [Widd80] tagged each block in main memory with a presence bit for each processor in the

18

system (to indicate that the memory block was contained in a particular cache), and a modified

bit (to indicate that a cached copy had been updated). These schemes eliminated the directory

search of Tang's protocol, but tied the size of the global directory to the potentially cacheable

blocks in main memory and limited the number of processors to the number of presence bits.

Therefore they did not scale well with increasing memory sizes or numbers of processors.

Three other protocols eliminated the latter drawback. The Two-Bit scheme of Archibald and

Baer [Arch84] improved on the Censier and Fautrier design by storing only the cache state for

each memory block. The number of bits per memory block was thus independent of the number

of processors in the system. This variation reduced the amount of memory devoted to the glo-

bal directory and allowed the number of processors to be expandable. Its drawback was that it

was not known globally which cache held which block, and therefore all caches had to be polled

to see which should invalidate on a write. Dir1NB and Dir1B
3 [Agar88b] distribute the global

directory and its operations among the caches. Both schemes limit the presence bits, and there-

fore the caches that can contain a block, to one. (The "presense bit" is actually a pointer to the

appropriate cache.) They will perform well only if data is shared in a very sequential nature,

with one processor accessing it at a time. Dir1B is an optimization of Dir1NB; it provides one

additional bit to indicate that there are multiple shared copies. When this bit is set, the

coherency operation is broadcast, rather than sent point to point (A summary of the centralized

protocols appears in Table 2-2.)

Like the software protocols, the centralized schemes are well suited for complex intercon-

nection networks, i.e., multiple paths to memory. In addition, their sequential operation is

easier to design and debug. However, several disadvantages make them u...~table for mul-

tiprocessors that utilize a single path (and therefore broadcast-based) interconnect, such as a

bus. The most serious drawback is their adverse effect on bus utilization, caused by the need

3 Their notation indicates that only 1 cached copy is allowed, and that bus broadcasts cannot (NB) or can (B) be

used to determine which cache contams the data..

19

Centralized Coherency Protocol Summa I}'_

Central Directory Or~anization Protocol

State of all caches Tang

State per memory block Censier & Fautrier

Presence bit per processor LSCS
Sl

Processor id per memory block Dir1NB

Processor id + broadcast bit per memory block Dir,B

Table 2-2: Centralized Coherency Protocol Summary

This table contains a summary of the key features of the centalized coherency protocols.

for separate communication between the central controller and each cache. Tilis overhead is

directly proportional to the nwnber of caches that share the data. Second, additional overhead

also results from the memory update of cached dirty data before it is shared. Tilird, the global

directory may need to be changed even when the action involves a single cache, for example,

signaling the central controller when a clean block is replaced. Other disadvantages are the ina-

bility to allow for processor expansion (with the exception of the Two-Bit, Dir1NB and Dir1B

schemes), the extra memory needed for the global directory and the time consumed by search-

ing it (Tang).

2.4. The Distributed Hardware Protocols

2.4.1. Overview

When the interconnection between processors and memory is a single bus, the generality

of the centralized coherency protocols may no longer be necessary. With multipl!!-cache data

sharing, the one-to-one communication between the global and cache directories generates an

amount of bus traffic that would quickly consume all available bus bandwidth. On the other

hand, the broadcast capability of the shared bus provides simultaneous transmission of informa-

20

tion to all processors. This feature led to a distributed approach to cache coherency. Under dis­

tributed coherency protocols, the responsibility for maintaining consistent caches belongs to the

individual cache controllers rather than to a central controller, and the need to maintain a global

directory is eliminated. Consequently, the number of processors can be extended to the limit of

the bus bandwidth.

In distributed coherency protocols a portion of each cache controller, the snoop, continu­

ously monitors the system bus for operations taking place on blocks contained in its cache.

When a match is made between the address of the bus operation and one of the cache tags, the

snoop performs a consistency-preserving operation, based on the type of bus request, the state

of the cache block and, of course, the panicular protocol. For example, if the bus request is a

write and the cache block state indicates that the block is shared, for several of the distributed

protocols, the snoop will invalidate its cache entry. Within the distributed, hardware category,

all protocols follow one of two approaches to maintaining coherency: write-invalidate or write­

broadcast (Again, a summary for the distributed, hardware protocols appears in Table 2-3.)

2.4.2. The Write-Invalidate Protocols

Write-invalidate protocols maintain coherency by requiring a writing processor to invali­

date all other cached copies of the data before updating its own. It can then perform the current

update, and subsequent updates (provided there are no intervening accesses by other processors)

without either violating coherency or further utilizing the bus. The invalidation is accomplished

by an invalidating bus operation. Caches of other processors monitor the bus via the snoop por­

tion of their cache controllers. 'When they detect an address match, they invalidate the entire

cache block containing the address. Because they create a data writer t...~at can access a shared

block without using the bus, write-invalidate protocols should minimize the ov~rhead of main­

taining cache coherency in two cases: when there are multiple consecutive writes to a block by

a single processor, and when there is little contention for the shared data.

Protocol
Write-Through
with Invalidation
Write Once
Synapse N+l

Berkeley Owner­
ship
illinois
RWB
Bitar

YMP

Firefly

Dragon

Competitive
Snooping

Clipper

Distributed Coherencv Protocol Summarv

Catezory Memory_ Uooate Policy Uni_que Feature

WI Write-through

WI
WI

WI

WI
WI
WI

WI

WB

WB

WB&WI

WB

Copy back
Copyback

Copyback

Copyback
Copy back
Copy back

Copy back

Copyback for private,
Write-Through for
shared data
Copyback for private,
Write-Through for
shared data
Copyback for private,
Write-Through for
shared data, Copyback
aftertheinvalidation
Depends on cache state

Reserved state
Explicit memory owner­
ship
Owned Shared state

Private Oean state
Read Broadcast
Got-Lock & Need-Lock
state
Software implementation
(interrupt-driven)
Unlocked bus operation
Memory updated with
broadcast

Memory not updated with
broadcast

Switches coherency policy

Snoops on shared bus
operations only

Table 2-3: Summary of the Distributed, Hardware Coherency Protocols

21

This table contains a summary of the key features of the distributed, hardware coherency protocols. WI

indicates that the protocol is one of the write-invalidate protocols; \VB that is write-broadcast.

The simplest write-invalidate protocol is Write-Through with ln'lalidation, which has

been implemented on dual processor machines4 (ffiM 370/168 [Saty80], mM 3033 [Smit85]

and the VAX 11n80 [Arch84]) and more recently shared memory multiprocessors (th~ Sequent

Balance 8000 [Thak88] and Encore Multimax [Be1185]). Under this protocol each write to the

4 One processor was dedicated to IIO operations.

22

cache is propagated through to main memory. s As usual, other cache controllers snoop on the

addresses of the writes and invalidate their copies if there is a match with their own cache tags.

The addresses are broadcast on a special high speed bus on the IBM machines, while the system

bus is used in the Sequent and Encore. The major drawback of Write-Through with Invalida-

tion is the amount of bus traffic generated by the writes. It forces the coherency-related bus

traffic (as well as bus traffic for private data) to be a direct function of the number of writes,

rather than of the amount of sharing.

The other write-invalidate protocols follow a copy-back policy for updating memory. At

a minimum, these protocols use the normal read and write bus operations and three state values

(invalid, read only and possibly shared, and exclusively held and therefore writable) to guaran-

tee consistency in the caches (Arch84]. For reasons of bus efficiency, most introduce a unique

fourth state and some have special bus operations. These additional features are used to

improve bus utilization when detecting and handling shared data. For example, an invalidation

signal is used by a writing processor to invalidate other cached copies of the block being

updated; the clean, private state is used to eliminate the need for issuing this invalidation signal

on the first write to an exclusively held block.

The first of the copy-back, write-invalidate protocols to appear in the literature was \Vrite

Once (Good83]. (Since there is only one write-through protocol, Write-Through with Invalida-

tion, from now on the term, "write-invalidate protocol", will refer to the copy-back subset)

Write Once employs write-through on the first write to a block (during which all snoops invali-

date their copies, and u'le updated block's state is changed to Reserved) and copy-back on all

subsequent writes (unw a read b~· another processor). It provides for cache-to-cache transfers

for requests for cached diny data, but requires a subsequent memory update to cleanse the

~Write-Through with Invalidation is unlike other write-invalidate protocols, because its write-through memory

update policy precludes taking advantage of private copies of shared data on cache updates. I am including it in the

write-invalidate category, because it utilizes invalidaticn signals to mainUiin coherency.

23

cached copies.6 Thus it incurs additional bus traffic over ciher protocols in two situations: over

those protocols that never rely on write-through for multiple writes to cached blocks (by a sin­

gle processor) [Katz85] and over those that either update memory during a cache-to-cache

transfer or only on block replacement for shared writable data.

The Synapse N+ 1 developed a different protocol, based on the concept of block ownership

[Fran84a, Fran84b]. Both memory and snoops could be explicit owners of blocks, and therefore

directories were associated with each. Ownership by a cache (i.e., private ownership) carried

the right to update the block locally without initiating a bus transfer and the obligations both to

update main memory on block replacement and to provide data to other caches upon request.

Obtaining private ownership involved a bus transaction that caused other caches to invalidate

their copies of the block. The protocol avoids the extra bus operation to memory incurred by

Write Once for write requests that result in cache-to-cache transfers of dirty data, but pays a

stiff three transaction penalty for reads (the bus operation is aborted, main memory is updated,

and the bus operation is then retried).

The Berkeley Ownership protocol [Borr85, Katz85], developed for the SPUR multiproces­

sor [Hi1186], improved upon the Synapse scheme by eliminating both the three bus transaction

overhead on reads that were satisfied by a cache and the state directory associated with memory.

All transfers between caches are done in one bus transfer, and memory is not updated in the pro­

cess. The notion of shared, but still owned and possibly dirty, data is preserved by the introduc­

tion of the Owned Shared state. If no cache owns a block, then memory is considered the impli­

cit owner, thus eliminating the need to explicitly represent memory ownership with additional

state. (See Chapter 4, section 2 for a more detailed description.)

The Illinois protocol [Papa85] introduced the clean, private state to distributed protocols.

The use of this state eliminates the need to signal a bus invalid~tion when it is known that the

6 Memory must be updated because there is no cache state value denoting "'shared, dirty"" data.

24

processor has the only cached copy of the block.7 It thus reduces bus traffic to the numh~r of

cache misses, invalidations when the data is thought to be shared and writes to memory on

block replacement. The clean, private state was used in lieu of the owned states. The lack of a

block owner means that any snoop that has a copy of a particular block might respond to a read

request. This requires either (1) an implementation that will guarantee that all snoops can

respond in the same bus cycle, or (2) extra processing time and/or logic to arbitrate for the mul-

tiple snoop/memory responses and lo retract the bus requests for the losers. In the implementa-

tion proposed for this protocol, memory was updated during a processor request for dirty data.

The simultaneous update reduces the number of bus transfers for block replacement below that

incurred in Write Once, Synapse and Berkeley Ownership, but requires a custom-designed

snooping memory controller to prevent memory latency from dominating the time of the data

transfer. (An almost identical protocol has been implemented on the Sequent Symmetry

[Love88]. The differences between them are that in the Symmetry protocol a cache with

modified, exclusive data changes its state to invalid, rather than shared, and there are no cache-

to-cache transfers of shared, clean data.)

Rudolph and Segal [Sega84] and Bitar and Despain [Bita86] have designed protocols

which are intended to optimize synchronization. The former, called RWB, is based on a read-

broadcast mechanism in which snoops take data from the bus (on data transfers initiated by

some other processor) if their cache blocks for the data are currently invalid. The write policy

is write-broadcast (explained below) for the first write to a block and an invalidation signal for

the second. It is not clear how this broadcast-invalidation sequence benefits semaphore usage,

since semaphores are written twice per critical section (once for setting, again for clearing).

The one write-broadcast precludes a private write for lock clearing (which would occur had the

7 The version of Berkeley Ownership that was implemented on SPUR approximates the private, clean state by

including an addressing mechanism for detecting references to the stack. Separate invalidation signals are not issued

for these references ..

25

first write triggered an invalidation instead), and the invalidation signal nullifies the data in

other caches, just when they need to detect that the lock is available. A better invalidation point

would be after two write-broadcasts. This would allow locks to remain in all caches, always

with the most current value, but other shared data to be invalidated after two writes. The

scheme seems better designed for the multiple readers/single writer situation. Other drawbacks

of the protocol are that (1) because of the write-broadcast it is intrinsically tied to a one-word

block size (unless the cache block state includes a valid bit per word rather than a single state

value for the entire cache block) and (2) the additional snoop accesses to the cache for the read­

broadcasL.s can interfere with CPU processing (see Chapter 6).

The Bitar and Despain protocol introduced two special coherency states to be used in lieu

of explicitly setting and clearing locks. One signifies that a cache has locked a data block; the

other that other processors are waiting for the locked block. If the block remains in the cache

until the unlock, the additional states reduce the bus operations needed for locking and unlock­

ing. However, if the block is replaced, its locked state will be lost Therefore a technique for

storing and checking the locked state in the block must be adopted, in addition to the extra

cache states. Their proposed implementation for busywaiting requires a special bus arbitration

scheme to give maximum priority to waiting processors, a special busy-wait register that con­

tains the address of the lock (for waiting processors) and a snoop for the busy-wait register that

monitors the bus for the unlock, obtains the lock and interrupts the processor to begin executing

the critical section. The obvious dtawback of this implementation is the complexity of the addi­

tional hardware. The advantage is that the busy-wait register and its snoop eliminate rereading

the semaphore after it has been unlocked. This pcn:llty is paid in the other write-invalidate pro­

tocols.

The protocol implemented in the VMP multiprocessor [Cher86, Cher88] is a hybrid

between the write-invalidate and software coherency schemes. Like the write-invalidate proto­

cols, it utilizes a snoop (which they call a "bus monitor") to monitor the backplane fN

26

coherency bus operations. However, the snoop's actions are implemented in software, rather

than as part of the cache controller hardware. The snoop does its lookup on an action table

(rather than the cache tags), that contains a bus operation-dependent action for each cache

block-sized unit of main memory (called cache page frames). For each action that requires a

snoop response, the CPU is interrupted; it then executes interrupt handler code from local

memory. The coherency protocol that is implemented is ownership-based (very similar to the

Synapse protocol, including the three bus operation sequence for reading dirty data), with an

additional feature: a special bus operation that can be used to signal that a lock has been

unlocked. The CPU delay to perform all operations caused by the interrupt-driven coherency

implementation is an extra source of overhead for V:MP, relative to the other write-invalidate

protocols. Its attraction is the ease with which the software algorithms can be debugged. Furth­

ermore, VMP's operating system includes a routine for differentiating between shared and

private data, which results in optimizations identical to those produced by the private, clean

state of the illinois protocol and the stack segment of the Berkeley Ownership implementation

on SPUR.

-·· -tJ. The Write-Broadcast Protocols

Rather than invalidating cached copies of shared, writable blocks, write-broadcast proto­

cols broadcast writes to shared blocks, so that all caches and memory have access to the most

current value. Blocks are known to be shared through the use of a special bus line. Snoops

assert this signal whenever they address match on an operation for a block t.~at resides in their

caches. As long as a writing processor detects an active shared line, it will continue to issue the

broadcasts. In the absence of an active shared signal, the processor will complete the write

locally. Thus, the signal provides fof write-through for shared data, but allows a copy-b~ck

memory update policy to be used for private data.

27

Write-broadcast protocols have potential performance benefits for both private and

actively shared blocks. First, an inactive shared line prevents needless bus operations to data

that reside only in the cache of the writing processor. In addition, because it broadcasts all

shared updates, write-broadcast avoids the pingponging of shared data among the caches that

would occur with the invalidations of the write-invalidate protocols during periods of data con­

tention. However, for data that is shared in a sequential fashion, with each processor complet­

ing all its accesses to the data before another processor begins, the w!i.te-through policy for

shared data may degrade bus performance.

Write-broadcast protocols were proposed for the Xerox P ARC Dragon [McCr84) and have

been implemented on the DEC Firefly [Thac88). The difference between the two protocols is

that the Dragon updates memory only on block replacement (in a procedure identical to the

Berkeley Ownership protocol), while the Firefly updates simultaneously with each write to

shared data. (See Chapter 4, section 2 for a more detailed description of the Firefly protocol.)

Competitive snooping [Karl86, Karl88) is a write-broadcast protocol that switches to

write-invalidate when the breakeven point in bus-related coherency overhead between the two

protocols is reached. This point occurs when the number of cycles for the broadcasts issued

equals the sum of the cycles should all processors need to reread the invalidated data. Their

proposed implementation assigns a counter, whose initial value is the cost in cycles of a data

transfer, to each cache block in every cache. With each snooped broadcast, some cache's

counter is chosen to be decremented. When its value is zero, the block is invalidated. When all

counters are zero, the write-broadcasts cease. Any access by a processor resets its cache's

counter to the initial value. Competitive snooping limits the overhead of write-broadcast to

twice that of optimal, but at some cost in hardware complexity. Finite state machines for

write-invalidation and write-broadcast protocols, bus lines for picking the counter to be decre­

mented and state bits (per cache line per cache) for counting must be implemented. (A more

detailed description of two competitive algorithms appears in Chapter 6.)

28

One of the Clipper's coherency mechanisms is a combination of the software and write-

broadcast approaches. The compiler designates all cache lines as shared or private, copy-back

or write-through. When the cache state indicates shared/write-through, the snoops monitor the

bus write, and update their caches if there is an address match. The technique reduces the

number of snoop lookups on the single-ported cache state RAMs. (Private data is not snooped.)

2.4.4. IEEE Classification of Distributed, Hardware Protocols

Sweazy and Smith [Swea86] devise a general classification for all existing distributed,

hardware coherency protocols. The model includes the union of the states of all the distributed

protocols (shared unmodified, shared modified, exclusive modified, exclusive unmodified and

invalid); and their standard backplane implementation (the Futurebus) includes signals to

implement all coherency operations. The resulting protocol is therefore a superset of the distri-

buted protocols and would allow caches with different protocols and memory update policies to

communicate successfully.

2.5. Initial Performance Studies

The early research in cache coherency focused on algorithmic development (the proto-

cols), proofs of functional completeness by case analysis8 (using Markov chains of the

coherency states and the bus operations that cause transitions between them, e.g.,

[Sega84, Yen85]), and a static analysis of the performance of individual bus operations. More

recent work has focused on a dynamic analysis, via analytic modeling9, parameterized simula-

8 Case analysis is a method of verifying !he functional completeness of an algorithm by an exhaustive examina­

tion of the nuniiications of each input condition.

9 An analytic model is a mathematical de.~ption of a system that solves for steady state behavior. It is a static

description. expressing the dependencies among the system parameterS. The parameterS in the model are random

variables.
10 A parameterized simulation is a description of system behavior over the time domain. Its inputs are synthetic

events whose valu~ are drawn from probability distributions.

29

tion 10 and trace-driven simulation. 11 In the analytic work, simplifying assumptions were often

made to reduce the computation time needed to solve the models. For example, several studies

simplified the complex interactions between the caches and the bus and omitted entirely the

interference between the snoop and the CPU's side of the cache controller. The most serious

simplification was for workload behavior.

Patel [Pate82] modeled processor utilization (the amount of time it took a processor to

accomplish one unit of work) of a multiprocessor system with a write-through cache. In the

absence of any knowledge of the nature of sharing, his model assumed that multiprocessor

memory references were random, independent and uniformly distributed over all of memory,

i.e., there was very little sharing of any kind. Therefore the activity of one processor could be

modeled and then multiplied by the number of processors. His study found that processor utili-

zation is a function of miss rate times the data transfer time.

Dubois and Briggs [Dubo82] modeled a shared memory multiprocessor with a centralized

coherency scheme. Their model more accurately describes the details of coherency activity,

and also includes separate workload models for write-shared data and the other types of

memory accesses. To emulate the more complex coherency mechanisms, they modeled the

effect of transmitting the invalidation signals and of a processor's waiting for the release of

read/write data. However, their model still omits the effects of contention for the global direc-

tories, which biases their results optimistically. The reference stream for their simulation was a

merging of private and shared read-only accesses, generated using the LRtJ stack model12, and

11 Trace-driven simulation uses a trace reflecting the execution behavior of the program under srudy as its input.

For coherency srudies the trace is composed of memory references issued by all processors in the multiprocessor.

12 The LRU (Least Recently Used) stack model models a reference string (a series of memory addresses) with

an LRU distance string. It is one of the priority stack techniques. Priority stack techniques are a method of simulat­

ing multiple-sized caches concurrently. They assume that (1) larger caches always contain the blocks that are

resident in the smaller caches, (2) the last referenced cache block is on the top of the stack and is the only block on

the stack to move up the stack, and (3) no blocks below the old position of the referenced block move. The LRU ver­

sion uses the least recently used block as the victim for stack replacement [Coff73].

30

shared read-write references, based on an independent reference model13• (As in the Patel

model, the latter is used because it is assumed that shared data has poor locality of reference.)

The analysis assumed very small levels of sharing (a large amount was considered to be one

percent), and all simulations were done with approximately 1000 addresses. Nevertheless, their

results support intuitive notions about the sources of performance degradation in centralized

coherency schemes. They found that coherency invalidations increased the miss ratio, the

traffic required to enforce the coherency rules (primarily copy-backs associated with the invali-

dations) and access the global directory, and the amount of time the processor was blocked from

the cache. All metrics increased proportionally to the degree of sharing. The degradation due

to processor lockout from the cache for a state change (valid to invalid, private to shared) was

found to be insignificant.

The Dubois-Briggs workload model was important, because it served as the basis for three

studies of distributed protocols [Arch86, Vem86, Vem88]. [Vem86] modeled particular

features of coherency protocols, rather than the protocols themselves, using generalized timed

Petri Nets14• They evaluated the effects of adding each of the fearures to a base coherency pro-

tocol very similar to Write Once. The four fearures were a shared bus line that could be used to

implement a private clean state, 15 the Owned Shared state of the Berkeley Ownership protocol

which allows cache-to-cache transfers of dirty data without the need to update memory, an

invalidation signal and the write-broadcast mechanism, assuming use of the shared line. They

meastL."ed bus utilization and processing powe~6 for data caches only. Their results indicated

that the shared line provided the biggest performance advantage, particularly as the level of

13 In tl!e independent reference: model the prob::.bility of a reference to a particular ne::t block is fixed; it

depends neither on the block previously referenced nor on whether the current block was referenced before. In other

words. the model does oot reflect locality of reference.

14 Generaliz.ed timed Petti Nets is an ;.nalytic teclmique whose state transitions have a deterministic firing dura­

tion, but the next state is stipulated by a probability distribution.

15 See Section 2.3.3 for a description of the use of the line.

16 Processing power is the number of processors times their average CPU utilization.

31

sharing was increased. They also found that the invalidation signal and dynamically switching

from write-broadcast to write-invalidate (as in the protocols described in [Sega84] and

[Karl86, Karl88]) contributed a negligible performance improvement over Write-once. It

should be noted, however, that their model's probabilistic inputs dictate a homogeneous access

pattern to the shared data, across processors. This reference pattern, one in which all processors

have equal access to the shared data, i.e., there is poor per-processor locality of reference, is one

in which write-broadcast should perform well. Conversely, write-invalidate should behave rela-

tively poorly, because the write-shared blocks will ping-pong among the caches. Therefore

their choice of workload model biased the results; and the poor performance of the write-

invalidate protocols should come to no surprise. They also found that a one-word block size

performs best, and for a similar reason. Here the uniform accesses to shared data were coupled

with a pessimistic hit ratio (.5) for write-shared data.

Identical studies are performed in [Vern88], but using a simpler modeling technique,

Mean-Value Analysis, 17 in place of the generalized timed Petri Nets. Their studies indicate that

the simpler methodology yields results comparable (within 3 percent on average) to the more

detailed model, across all protocol features and a wide range of parameter values. (There is a

slight tendency to underestimate bus utilization and overestimate inter-processor memory and

cache interference, but the differences are all tolerable.) The paper convincingly demonstrates

the superiority of the simpler approach, in terms of both the accuracy of its results, and its

efficiency in obtaining solutions, and therefore iLs ability to solve for larger systems. However,

because Mean Value Analysis suffers from the same probabilistic treatment of the shared data

reference input strea.rn as generalized timed Petri Nets, again, the results are biased toward

write-broadcast.

17 Mean-Value Analysis is an analytic technique that solves a set of equations that compute the mean value of

certain performance (output) metrics in terms of the mean value of the model's inputs.

32

Archibald and Baer [Arch86] compared the behavior of several of the distributed,

hardware protocols via parameterized simulations. Unlike previous comparative protocol stu-

dies, they tried to make the specification of a protocol independent of its implementation. For

example, they disallowed the simultaneous updating of memory during a block transfer to a

cache that is used in the illinois protocol. Again, their workload model was derived from the

one developed by Dubois and Briggs, and their metric for protocol comparisons was one similar

to processing power. Their analysis focussed on scenarios of high and low (i.e., mostly private

data) contention for shared blocks. Many of their results are intuitive. They found that the per-

formance for all protocols was comparable for a small number of processors; but that as the

number of processors increased, protocols that could detect private, clean data (i.e., the write-

broadcast and Illinois protocols) performed best, assuming a low amount of sharing; with more

contention for shared data (modeled by shared block references of five percent on sixteen shared

blocks) the write-broadcast protocols did best. One counter-intuitive result is that with higher

levels of sharing, Berkeley Ownership performed better than the illinois protocol. While it is

true that the Berkeley protocol has a more efficient handling of shared data (because of the

Owned Shared state), the latter is better at handling private data (because of the clean private

state). Since private data is referenced (in their study) the vast majority of the time (95 per-

cent), Berkeley Ownership's better performance over the illinois protocol protocol is surpris-

m. 0' 18
e·

[0wic89] modeled the two basic software coherency mechanisms, noncacheable shared

data and cache flushing, with both a bus and cross-bar interconnect. The model includes a com-

ponent for bus a_11d interconnect contention, as well as for the workload and system operations.

The results support intuitive notions about the performance of these protocols. At low levels of

18 In this study the cache sizes were small (2K and 16K bytes). A larger cache would have exaggerated the

overhead of sharing, which this research has shown to be relatively immune to the benefits of increasing cache size.

See Chapter 5.

33

sharing with few processors there is little difference in protocol performance. As these parame­

ters rise, the effectiveness of noncacheable data falls off rapidly. (At high levels, it saturates the

bus with a processing power less than two.) A sensitivity analysis of several model parameters

in the bus studies indicates that cache flushing is quite sensitive to the number of data refer­

ences, particularly shared data references, and the number of accesses to a block before it is

flushed. A comparison of the software techniques to a representative distributed, hardware pro­

tocol (Dragon) indicates that the snooping approach gets better performance at all parameter

values. In the multistage interconnection studies, since network bandwidth increases with the

number of processors, both software protocols scale well. Unlike the previous analytic studies,

this work includes a workload parameter that reflects per processor locality of reference to

write-shared data. The parameter measures the number of accesses to a write-shared variable

before it is flushed from the cache and is used to approximate the number of writes before flush­

ing.

The remainder of the work on coherency protocol performance has a more direct bearing

on the topics covered in this dissertation and therefore will be discussed in conjunction with the

results of particular studies (see Chapters 4 through 6). All experiments were done using trace­

driven simulation. The traces were generated in 400K reference snapshots on a four-processor

VAX 8350 running the MACH operating system [Baro85, Site88]. Since the generation tech­

nique was microcode-based, the traces contain references from a cross-context workload,

including th.~ oper:-.ung :>ystcm. Briefly, [Site88) analyzed several aspects .of multiprocess and

parallel processing cache behavior, the most relevant of which for this work was the measure­

ment of the additional bus traffic caused by the invalidations in write-invalidate protocols.

[Agar88a) studied the temporal, spatial and processor locality of user and system references in

parallel programs; and [Cher88) examined the behavior of parallel programs running on a VMP

simulator, in particular the change in coherency overhead as block size was increased. The stu-·

dies differ from this dissertation research in the type of experiment done and the workload used.

34

2.6. Critique of Previous Studies

Most previous analyses of coherency protocols have had weaknesses in methodology,

both analytic technique and workload model, and choice of metric. Their methodology, be it

case analysis, analytic modeling or parameterized simulation, restricted them to a static analysis

of particular protocol functions or a simplified dynamic analysis. Case analysis is an important

tool for specifying the functional completeness of a protocol, but it is a static modeling device.

Analytic modeling and parameterized simulation are more sophisticated techniques. (For

example, parameterized simulation characterizes dynamic protocol behavior.) However, they

are only starting points and both have drawbacks.

Detailed analytic models with realistic parameter values are often computationally expen­

sive to solve. They may be simplified in order to get a solution more quickly. The disadvan­

tage of the simplified versions is that their aggregate behavior parameters and convenient (for

solvability), but inaccurate, assumptions about the probability distributions do not model reality

accurately. These simplifications have an important effect on the results of modeling coherency

protocols.

In the absence of multiprocessor programs from which to determine workload parameters,

all previous analytic studies (except [Owic89]) made certain assumptions about the type and

frequency of sharing. They assumed that memory accesses to write-shared data are independent

and uniformly distributed across processors. This was expressed in the models by a parameter

for the proportion of accesses to write-shared data; its value was varied to e_mulate low or high

levels of sharing.

The uniform access pattern models multiprocessor contention for write-shared data.

Therefore the models' workload assumption guaranteed that those protocols that were designed

to handle contention behaved well, relative to those that are more appropriate for a more

sequential sharing behavior. It is well understood that uniprocessor programs exhibit temporal

35

and spatial locality in their memory reference behavior. (In fact, [Dubo82] and [Arch86] use

the LR U stack model to generate references to private data and instructions.) There is no reason

to assume a priori that the same locality principles will not apply to shared data.

Many previous studies have focused on total system performance, using processing power

(i.e., multiprocessor utilization) as their metric. Processing power is a good summary metric,

but it doesn't provide the detail needed either for a thorough analysis of the behavior of parallel

programs or for multiprocessor cache and cache coherency protocol design. Different key

aspects of system performance should be identified and analyzed separately. For example,

measuring contention between the snoop and the CPU over use of the cache is important,

because it may explain the cause of lower processor utilization and program speedup (as

opposed to sequential portions of the code). Secondly, an understanding of cache miss ratio

will aid in the design of cache organizations for multiprocessors; this is particularly critical if

those designs must be based on different criteria than for uniprocessor systems. Finally, metrics

other than processing power will provide a better understanding of the limits of bus-based sys­

tems. Bus utilization, and the effect of shared memory accesses on it, is important to measure,

because the bus is the critical resource in single-bus multiprocessors.

In this dissertation I plan to correct the deficiencies of the previous work in several ways.

First, a model of coherency overhead will be developed that incorporates a more accurate work­

load component, one in which the pattern of access to write-shared data is modeled in detail.

Second, trace-driven simulation, using memory reference traces of parallel ~pplications, will be

used to obtain realistic parameter values for the model and to verify it. Third, the studies will

analyze the causes of parallel program performance, focusing on the components of system

throughput, rather than simply recording its level. These empirical studies analyze the cache

and bus behavior of parallel programs and will also be done by trace-driven simulation. The

combination of a more realistic workload and the detailed studies will provide a better analysis

of the behavior of parallel programs, running on bus-based multiprocessors. Once that behavior

36

is detennined, a more accurate measurement of coherency perfonna'1ce of panicular protocols

can be obtained. I treat the trace-driven methodology in detail in the next chapter; and the par­

ticular studies, their metrics and results, and comparisons to the other trace-driven work in

Olapters 4 through 6.

37

2.7. References

[Agar88a] A. Agarwal and A. Gupta, "Memory-Reference Olaracteristics of Multiprocessor

Applications under MACH", Proceedings of the 1988 ACM Sigmerrics

Conference on Measurement and Modeling of Computer Systems, 16, 1 (1988),

215-225.

[Agar88b] A. Agarwal, R. Simoni, M. Horowitz and J. Hennessy, "Scalable Directory

Schemes for Cache Coherence", Proceedings of the 15th. Annual International

Conference on Computer Architecture, 16, 2 (May 1988), 280-289.

[Alle88] F. Allen, M BuiKe, P. Charles, R. Cytron and J. Ferrante, "An Overview of the

PTRAN Analysis System for Multiprocessing", Journal of Parallel and

Distributed Computing (December 1988).

[Arch84] J. Archibald and J. Baer, "An Economical Solution to the Cache Coherency

Problem'', Proceedings of the 11th Annual International Symposium on Computer

Architecture, 12, 3 (June 1984), 355-362.

[Arch86] J. Archibald and J. Baer, "An Evaluation of Cache Coherence Solutions in

Shared-Bus Multiprocessors", ACM Transactions on Computer Systems, 4, 4

(November 1986), 273-298.

[Baro85] R. Baron. R. Rashid, E. Siegel, A. Tevanian and M. Young, "MACH-1: An

Operating System Environment for Large-Scale Multiprocessor Applications'',

IEEE Software (July 1985).

[Bell85] C. G. Bell, "Multis: A New Class of Multiprocessor Computers", Science, 228

(April1985), 462-467.

[Bita86] P. Bitar and A. M Despain, "Multiprocessor Cache Synchronization: Issues,

Innovations, Evolution", Proceedings of the 13th Annual International

Symposium on Computer Architecture, 14,2 (June 1986), 424-442.

[Borr85] G. Borriello, S. Eggers, R. Katz, H. McKinley, C. Perkins, W. Scott. R. Sheldon, S.

Whalen and D. Wood, "Design and Implementation of an Integrated Snooping

Data Cache", Technical Report No. UCB/Computer Science Dpt 85/199,

University of California, Berkeley (January 1985).

[Bran85] W. C. Brantley, K. P. McAuliffe and J. Weiss, "RP3 Processor-Memory

Element", Proceedings of the 1985 International Conference on Parallel

Processing (1985), 782-789.

[Cens78] L. M. Censier and P. Feautrier, "A New Solution to Coherence Problems in

Multicache Systems", IEEE Transactions on Computers, C-27, 12 (December

1978), 1112-1.112.

[Cheo88] J. Oleong and A. V. Veidenbaum, "A Cache Coherence Scheme With Fast

Selective Invalidation", Proceedings of the 15th AnnuaL International Symposium

on Computer Architecture, 16, 2 (May 1988), 299-307.

[Cher86] D. R. Cheriton. G. A. Slavenburg and P. D. Boyle, "Software-Controlled Caches in

the VMP Multiprocessor", Proceedings of the 13th International Symposium on

Computer Architecture, 14, 2 (Jur.e 1986), 366-374.

[Cher88] D. F. Oleriton. A. Gupta, P. D. Boyle and H. A. Goosen, "The VMP

Multiprocessor: Initial Experience, Refinements and Performance Evaluation",

Proceedings of the 15th Annual International Symposium on Computer

Architecture, Honolulu, HA (May 1988), 410-421.

38

[Coff73] E. G. Coffman, Jr. and P. J. Denning, in Operating Systems Theory, Eaglewood

Cliffs, New Jersey (1973), Prentice-Hall, Inc.

[Cytr88] R Cytron, S. Karlovsky and K. P. McAuliffe. "Automatic Management of

Programmable Caches", Proceedings of the 1988 Internatio!Ull Conference on

Parallel Processing, 2 (August 1988), 229-238.

[Dubo82] M. Dubois and F. A. Briggs, "Effects of Cache Coherency in Multiprocessors",

IEEE Transactions on Computers, C-31, 11 (November 1982), 1083-1099.

(Edle85] J. Edler, A. Gottlieb, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, M. Snir, P. J.

Teller and J. Wilson, "Issues Related to MIMD Shared-memory Computers: the

NYU Ultracomputer Approach", Proceedings of the 12th AnnuaL International

Symposium on Computer Architecture, 13,3 (June 1985), 126-135.

[Fran84a] S. J. Frank., "Synapse Tightly Coupled Multiprocessors", unpublished

manuscript (1984).

[Fran84b] S. J. Frank. "Tightly Coupled Multiprocessor System Speeds Memory-access

Times", Electronics, 51, 1 (January 12, 1984), 164-169.

[Full78] S. H. Fuller and S. P. Harbison, "The C.mmp Multiprocessor", Technical Report

No. CMU/CS 78/146, Carnegie-Mellon University (October 1978).

[Good83] J. R Goodman. "Using Cache Memory to Reduce Processor-Memory Traffic",

Proceedings of the lOth Annual Internatio!Ull Symposium on Computer

Architecture, 11,3 (June 1983). 124-131.

[Gust82] R N. Gustafson and F. J. Sparacio, "IBM 3081 Processor Unit: Design

Considerations and Design Process'', IBM Journal of Research and Development,

26, 1 (January 1982), 12-21.

[Hill86] M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor. G. Adams, B. K. Bose. G. A.

Gibson, P.M. Hansen. J. Keller. S. I. Kong, C. G. Lee, D. Lee. J. M. Pendleton, S.

A. Ritchie, D. A. Wood, B. G. Zorn, P. N. Hilfinger, D. Hodges. R. H. Katz, J.

Ousterhout and D. A. Patterson, "SPUR: A VLSI Multiprocessor Workstation",

IEEE Computer, 19, 11 (November 1986), 8-22.

[Karl86] A. R. Karlin, M. S. Manasse. L. Rudolph and D. D. Sleator. ''Competitive Snoopy

Caching", Proceedings of the 27th Annual Symposium on Foundations of

Computer Science. Toronto, Canada (October 1986), 244-254.

[Karl88] A. R. Karlin, !vi S. Manasse, L. Rudolph and D. D. Sleator. "Competitive Snoopy

Caching", Algorithmica, 3 (1988), 79-119.

[Katz85] R. Katz, S. Eggers, D. Wood, C. L. Pemns and R. Sheldon, "Implementing a

Cache Consistency Protocol", Proceedings of the 12th Annual International

S;•mposium en Computer Architecture, 13, 3 (June 1985), 276-283.

[Lee87] R. L. Lee. P. Yew and D. J. Lawrie, "Multiprocessor Cache Design

Considerations", Proceedings of the 4th Annual International Symposium on

Computer Architecture, 15, 2 (June 1987), 253-262.

[Love88] R. Loven and S. Thakkar, "The Symmetry Multiprocessor System", Proceedings

of the 1988 International Conference on Parallel Processing, University Parle PA

(August 1988), 303-310.

[McCr84] E. McCreight, "The DRAGON Computer System: An Early Overview", NATO

Adv.:mced Study Institute on Microarchitecture of VLSI Computers, Urbina. Italy

(July 1984).

39

[McGr86] S. McGrogan. R. Olson and N. Toda, ''Parallelizing Large Existing Programs -

Methodology and Experiences", Proceedings of Spring COMPCON (March

1986), 458-466.

[Neff86] L. Neff, "Dipper Microprocessor Architecture Overview", Proceedings of

Compcon '86, San Francisco CA (March 1986), 191-195.

[Olso85] R Olson, "Parallel Processing in a Message-Based Operating System", IEEE

Software (July 1985), 39-49.

[Owic89] S. Owicki and A. Agarwal, "Evaluating the Performance of Software Cache

Coherency'', to appear in ASPLOS III. (April 1989).

[Papa85] M. S. Papamarcos and J. H. Patel, "A Low-Overhead Coherence Solution for

Multiprocessors with Private Cache Memories", Proceedings of the 11th Annual

International Symposium on Computer Architecture, 12, 3 (January 1985), 348-

354.

[Pate82] J. H. Patel, "Analysis of Multiprocessors with Private Cache Memories", IEEE

Transactions on Computers, C-31, 4 (April1982), 296-304.

[Pfis85] G. F. Pfister, W. C. Brantley, D. A. George, S. L. H:uvey, W. J. KleiDcelder, K. P.

McAuliffe, E. A. Melton. V. A. Nonon and J. Weiss, "The IBM Research Parallel

Processor Prototype (RP3): Introduction and Architecwre", Proceedings of the

19851nternational Conference on Parallel Processing (1985), 764-771.

[Saty80] M. Satyanarayanan, "Commercial Multiprocessing Systems", IEEE Computer,

13,5 (May 1980), 75-96.

[Sega84] Z. Segall and L. Rudolph, "Dynamic Decentr:>lized Cache Schemes for an MIMD

Parallel Processor", Proceedings of the 11th International Symposium on

Computer Architecture, 12, 3 (June 1984), 340-347.

[Site88] R. L. Sites and A. Agarwal, "Multiprocessor Cache Analysis Using A TUM",

Proceedings of the 15th Annual International Symposium on Computer

Architecture, Honolulu, HA (May 1988), 186-195.

[Smit85] A. J. Smith, "CPU Cache Consistency with Software Support Using 'One Time

Identifiers'", Proceedings of the Pacific Computer Communications Symposium,

Seoul, Republic of Korea (October 1985), 142-150.

[Swea86] P. Sweazey and A. J. Smith, ''A Qass of Compatible Cache Consistency Protocols

and Their Support by the IEEE", Proceedings of the 13th International

Symposium on Computer Architecture, 14, 2 (June 1986), 414-423.

[Tang76] C. K. Tang, • 'Cache System Design in the Tightly Coupled Multiprocessor

System", Proceedings of National Computer Conference (1976), 749-753.

[Thac88] C. P. Tnacker, L. C. Stewart and E. H. Satterthwaite, Jr., "Firefly: A

Multiprocessor Workstation", IEEE Transactions on Computers, 37, 8 (August

1988), 909-920.

[Thak88] S. Thakkar, P. Gifford and G. Fielland, "The Balance Multiprocessor System",

IE££ Micro (February 1988), 57-69.

[Veid86] A. V. Veidenbaum, "A Compiler-Assisted Cache Coherency Solution for

Multiprocessors", Proceedings of the 1986 International Conference on Parallel

Processing (August 1986), 1029-1036.

[Vem86] M. K. Vernon and M. A. Holliday, "Performance Analysis of Multiprocessor

Cache Consistency Protocols Using Generalized Timed Petri Nets", Proceedings

of Performance '86 and ACM Sigmetrics 1986, Raleigh NC (11ay 1986), 9-17.

40

[Vem88] M. K. Vernon, E. D. Lazowska and J. Zatx:>rjan. "An Accurate and Efficient

Performance Analysis Technique for Multiprocessor Snooping Cache-Consistency

Protocols", Proceedings of the 15th Annual International Symposium on

Computer Architecture, 16, 2 (May 1988), 308-315.

[Widd80] L. C. Widdoes, Jr., "The S-1 Project: Developing High-Performance Digital

Computers", Proceedings of Compcon 80, San Francisco CA (February 1980),

282-291.

[Yen82] W. C. Yen and K. S. Fu, "Analysis of Multiprocessor Cache Organizations with

Alternative Main Memory Update Policies", Proceedings of the 8th Annual

International Symposium on Computer Architecture, 9, 3 (May 1982), 89-100.

[Yen85] W. C. Yen, D. W. L. Yen and D. S. Fu, "Data Coherence Problem in a Multicache

System", IEEE Transactions on Computers, C-34, 1 (January 1985), 56-65.

41

3 Methodology

3.1. Introduction

The goal of this research is to understand the sharing behavior of parallel programs and to

analyze its impact on multiprocessor cache and bus performance, given particular snooping

coherency protocols. One of the unique and important aspects of the work is that it was

intended that the studies be driven by a real worldoad. ~refore appropriate parallel programs

had to be found, and memory reference traces had to be collected from them in order to carry

out the experiments. Several problems were encountered in doing this, an·relating to the paral­

lel nature of the worldoad.

First, the programs themselves were difficult to locate. Not many substantial parallel pro­

grams had been written, and most of those in existence were proprietary to particular multipro­

cessor companies or customer-owned, and therefore unavailable to the research community. In

addition, in order to avoid justifiable criticisms of an inappropriate worldoad, I considered it

42

crucial to use programs that had been written for a multiprocessor architecture similar to the one

being studied. Therefore I limited the search to those running on bus-based, shared memory

machines. The programming paradigm of these programs was a model in which the granularity

of parallelism was a process. This eliminated the relatively larger body of numerical programs

that had been written for other multiprocessor architectures, and whose granularity of parallel­

ism was much finer, on the level of do loop iterations, for example.

Even when using programs written for bus-based, shared memory multiprocessors, there

were still questions about the applicability of memory reference traces generated on one

machine being used for simulations of another. Issues concerning inter-processor synchroniza­

tion and varying instruction execution times had to be resolved. The resolution necessitated

extensive postprocessing of the traces, to identify shared accesses and synchronization points.

Postprocessing expanded the traces to sizes that were prohibitive for disk residence. The

storage problems were aggravated by the multiprocessor nature of the experiments, i.e., that

separate traces were needed for each processor. Therefore trace compaction techniques, spe­

cially designed for handling parallel trace content, had to be developed.

Special problems were encountered in debugging the multiprocessor simulator, because of

the asynchronous activity of the processors. The list of potential processor interactions is far

too numerous to allow individual testing. Therefore techniques were developed to trap system­

wide errors as they occurred in the actual simulations, to prevent the incorrect actions of one

processor from pe1turbing the behavior of others.

Each phase of the methodolog;r: trace generation, trace postprocessing and compression,

and the simulation itself, will be treated in detail in the subsequent chapter sections. Each sec­

tion will address the problems encountered and discuss the solutions.

43

3.2. Trace-driven Simulation

All studies in this dissertation are performed by trace-driven simulation. Trace-driven

simulation has the advantage over other forms of modeling in that its input, an address trace,

exactly characterizes the behavior of the program (or a portion of the program) from which it

was generated. Therefore the order and frequency of events, in this case the coherency-related

operations, can be accurately measured and analyzed. To the extent that the program is

representative of a "typical" workload and the details of the system are sufficiently simulated,

the simulation results are an accurate portrayal of system behavior. Its advantage over measur­

ing activity via a hardware monitor is that one can change configuration parameters to do com­

parative studies.

The drawbacks of trace-driven simulation stem primarily from the traces being a worm's

eye view of an actual workload. First, because of storage and simulation time constraints, a

relatively small amount of activity can be simulated. Second, traces that include operating sys­

tems activity are difficult to obtain. A common technique for generating traces is through

software that behaves like a symbolic debugger, breakpointing at key locations and dumping

1race information (see section 3.3). It is difficult to use this type of trace generator in conjunc­

tion with operating systems code, because of kernel protection and the inability to recompile the

operating system. The lack of operating systems references skews the results by eliminating the

effect of context switching and the (presumably) lower locality of reference. These perturba­

tions are imponant per se, and also because in many systems the operating system dominates

the workload. The only other set of multiprocessor traces overcomes this disadvantage, through

the use of a microcode gen~ration technique in which samples of memory reference activity are

gathered across several contexts [Site88].

An additional reason for doing trace-driven simulation of parallel programs is that it will

yield parameter values that can be used in analytic models of multiprocessor activity. Research

44

in parallel architectures is still in such a stage of infancy that we do not yet have good intuition

for parameter values of sharing behavior. (A more complete critique of trace-driven simulation

appears in [Clar83, Smit85].)

3.3. The Traces

Trace-driven simulation has traditionally been applied to uniprocessor studies. Recent

advances in parallel computing have provided an opportunity to do simulations of multiproces-

sors. In particular, the emergence of commercial multiprocessors and the development of paral-

lel algorithms to run on them have made traces of parallel programs available. For the studies

in this dissertation, traces were generated from four parallel programs. The programs are all

CAD tools that were developed for single-bus, shared memory multiprocessors (see Table 3-1).

The choice of application area was deliberate, so that the workload being analyzed was

appropriate for small-scale machines. (See section 3.5 .1 for a discussion of this architecture.)

One program is production quality (SPICE); the others are research prototypes. Two of the pro-

grams (CELL and TOPOPT) are based on simulated annealing algorithms. CELL [Caso86]

Parallel Applications

Trace Name Architecture, Program Description I Number of

Operating Svstem I Processors

CELL Sequent Balance, Unix simulated annealing algorithm 12

for cell placeJ?ent

TOPOPT Sequent Balance, Unix simulated annealing algorithm 11

for topological optimization .
VERIFY Sequent Balance, Unix logic verification 12

SPICE ELXSI 6400 Em bos direct method circuit simulator 5

Table 3-1: Traces Used in the Simulations

The traces used in the sharing simulations were gathered from parallel progr«ms that were written for

shared memory multiprocessors. The programs are all "real", being either production quality (SPICE) or

research applications.

45

uses a modified simulated annealing algorithm for IC design cell placement that attempts to

minimize total area and wire length. The algorithm allows cells to overlap in the early stages

and finally removes all overlaps by the time it completes. The cell descriptions reside in shared

memory, and all cell moves (for example, placement within a processor's chip area or exchang­

ing cells with another processor) are generated and accepted independently. For the trace, the

program placed twenty-three cells. Program speedup is 6 on an 8 processor Sequent Balance

8000, with comparable results to uniprocessor implementations.

TOPOPT [Deva87] does topological compaction of MOS circuits. The circuit is

represented in symbolic form (as a Weinberger Array); the algorithm minimizes the layout by

repeatedly folding the rows of the array. Representations for the array, gates and signals reside

in shared memory. Dynamic windowing results in array sharing (windows into the array

change processors over time), and dynamic partitioning shares gates and signals through inter­

window exchanges. The input was a technology-independent multi-level logic circuit. The

program achieves a speedup of 6 on an 8 processor Sequent Balance 8000, while generating

solutions similar in quality to uniprocessor results.

VERIFY [Ma87] is a combinational logic verification program, which compares two dif­

ferent circuit implementations to determine whether they are functionally (Boolean) equivalent.

The algorithm uses a two-phase technique: the enumeration phase lists all inputs that will pro-

duce outputs of either zero or one for the first circuit, using a PODEM-based 1 enumeration

algorithm; the second phase simulates the inputs of the first circuit on!' c Second and compares

the two sets of outputs. The trace snapshot is taken from the enumeration phase, and the major

shared structure is the graphical representation of the first circuit. The input for the trace was a

combinational benchmark circuit that is used for evaluating different test generation algorithms

[Brgl85]. The program achieves a speedup of 7.8 on an 8 processor Sequent Balance 8000, 10

1 "path-oriented decision making" (depth-first search of graphs representing the circuits).

46

to 11 on a 12 processor machine.

The final program, SPICE [McGr86], is a circuit simulator; it is a parallel version of the

original direct method approach. The algorithm solves a set of nonlinear ordinary differential

equations, which are a description of the circuit's devices. The ODE's are integrated to yield a

set of nonlinear algebraic equations. These equations are then solved iteratively using the

Newton-Raphson technique, which first linearizes the equations and then solves the resulting set

of sparse linear equations using LU-decomposition. When executing on an ELXSI 6400, this

program achieves speedup that is almost linear with the number of processors, across a wide

variety of inputs. For this trace the program's input was a chain of 64 inverters.

All applications use a coarse-grain parallel programming paradigm for carrying out the

parallel activities (see Figure 3-1). The granularity of parallelism is a process, in this case one

for each processor in the generation machine. The model of execution is single-program-

multiple-data, with each child process independently executing identical code on a different

portion of shared data. The shared data are divided into units that are placed on a logical queue

in shared memory. Each process takes a unit of work from the queue, computes on it, writes

results, and then returns the unit of work to the end of the queue. When the programs first begin

execution, there is unusual contention for the locks protecting the queue of work, since all child

processes try to take a unit of work simultaneously. However, only one process will obtain

access to the queue at a time. Assuming that each process does a comparable amount of pro-

cessing, they will thereafter access the queue in the same order and spaced in time by the com-

putation interval. This self-scheduling is disrupted by synchronization barriers? which are used

to separate phases in the computation. The disruption causes more busywaiting and therefore

an increa<:e in references to shared addresses. All four programs followed this basic procedure,

2 Synchronization barriers are synchronization points in the application that cause all parallel processes that

have reached them to wait until the other processes have arrived. Then all processes proceed with the execution

simultaneously.

queue of
shared work

Programming Paradigm

parent starts the job

PI P2 ooo Pn

barrier synchronization 1----7---'

parent ends the job

Figure 3-1: Flow Chart of the Programming Paradigm of the Parallel Traces

47

This simplified representation illustrates the programming paradigm of the parallel programs under study.

The parent process starts and ends the program, and forks child processes that do the parallel portion of

the computation. Each child process executes the same code. At certain points in the parallel computa­

tion, the children resynchronize, and then repeat the computation. Within each iteration, the children pro­

cess different portions of the work queue, which resides in shared memory. For example, in a parallel­

ized circuit simulator, the circuit would be divided into groups of devices (nodes). In each iteration, each

child would process a particular node. Data sharing occurs because the inputs and outputs of the nodes

interconnect, and a node may be processed by different child processes in different iterations.

with two exceptions: TOPOPT does not use locks to protect the write-shared data, and there are

no synchronization barriers in VERIFY.

The scope of the traces is limited to memory references of the applications, and the

operating system runtime routines used to set up shared memory and support locking. Because

of the well known difficulty in tracing operating systems code (see section 3.2), the path of the

applications through the rest of the operating system is not captured in the traces. In addition,

each of the parallel processes was run on a single processor without process migration. Despite

these omissions, the simulations should produce reliable results. The only trace-driven study

that included operating systems activity found that sharing in the operating system added little

48

to the user figures [Agar88]. For example, the proportion of write-shared references to total

references and shared data references to total data references remained roughly constant when

operating systems references were included. Process migration exacerbates bus bandwidth

demands by causing additional misses when faulting in the process on a new processor and by

creating coherency bus traffic for private data or cache flushes to prevent it. [Agar88] found

evidence that process migration decreased the temporal locality of shared references, i.e.,

increased contention for shared data, and introduced sharing for private data. Since I was

interested in measuring the amount of bus traffic to shared data only, unperturbed by the effects

of process migration, I chose not to emulate process migration in the simulations.

Both the Sequent and ELXSI traces were generated using a software trace generator.3

Both generators function like symbolic debuggers, using trace-trap facilities to halt at each

instruction and dump trace information, both for instructions and their operands. They also

included the ability to start and stop tracing and to determine the address range of the code and

data sections, including the subrange for the shared variables. (The latter was needed for trace

verification and the identification of shared data.) The ELXSI generator was itself a parallel pro-

gram. Each child process executed on a different processor, tracing the process of the parallel

application that had been scheduled on its processor. The traces were generated on a per pro-

cessor basis, with the trace records of each processor outputted to a separate output device. The

Sequent tracer was much more primitive. It executed instructions from each processor on a

round robin basis; memory references from aU processors were sent to a single Dutput file and

had to be separated during the postprocessing phase.

3 The Sequent tracer that was used was adapted from a version written at Sequent; the ELXSI tracer was written

at ELXSI by John Sanguinetti.

49

3.4. Trace Postprocessing

Accurate trace-driven simulation of parallel programs requires changes to the traditional

trace-driven methodology. Both the traces and the simulator are affected. The traces must be

postprocessed to detect shared data and synchronization points, and the sheer volume of data

must be handled through special compaction techniques. The simulator must be able to detect

program development errors in the coherency protocols that are caused by the asynchronous

interaction of the multiprocessor components. These errors occur both within a single processor

node (between the snoop and the portion of the cache controller that acts on behalf of the CPU)

and across processors. (The changes to trace handling will be discussed in the following two

subsections; enhancements to the simulator appear in section 3.5.4.)

3.4.1. Detecting and Processing Sharing in the Parallel Traces

In both the Sequent Balance 8000 and the ELXSI 6400 all child processes that execute in

parallel have their own virtual address space. If a multiprocessor simulator that implemented

the distributed, hardware protocols maintained coherency merely on the basis of a cache tag

comparison, coherency operations would be generated for private data, as well as shared.

Therefore shared references must be explicitly identified during the trace postprocessing phase

that precedes simulation. The identification ensures an accurate coherency enforcement, and

has the beneficial side effect that shared references can be detected for separate analysis. For

this purpose, shared accesses were further classified as locks or the applications shared data that

was protected, and cacheable or noncacheable. The identification was achieved through symbol

tables, load (memory) maps and interactive (generation) runtime identification. In SPICE all

shared data was grouped into separate Fonran COMMON blocks that were declared to reside in

shared memory via system calls; the symbol table identifi~d the starting address and length of

these blocks. Load maps contain addresses of procedures and data of the applications and the

library routines that support shared memory and lock manipulation. They were used to separate

50

references to the stack, instruction space, and certain areas within the heap that are known sys­

tem shared areas, as well as to locate entry points to specific routines that handled, for example,

locking. Other addresses had to be identified during runtime. Examples are data that was allo­

cated dynamically into shared memory (locks and semaphores in SPICE and all shared data in

the Sequent-generated programs) and key code sequences that were embedded within a subrou­

tine, rather than being a discrete function (such as sequences for locking, unlocking, barrier syn-

chronization and the start and end of main algorithm iterations4
). For the latter both the start­

ing address of the code sequence and the instructions contained within it were needed. Once

addresses of shared data and synchronization code were known, the traces were postprocessed

to detect and flag all occurrences. This made detection by the simulator trace-independent.

The onset of lock and unlock sequences in the traces was flagged, so that serial access to

shared areas could be enforced and busywaiting could be implemented (and measured) in the

multiprocessor simulations. In addition, a common lock/unlock sequence was embedded in the

simulator. It was used in the simulations in lieu of the locking algorithms implemented on the

ELXSI and Sequent machines, so that the sharing statistics were not perturbed by the differ­

ences between the algorithms. Therefore all locking sequences in the traces were marked,

through the dynamic probing described above, to prevent their being processed by the multipro­

cessor simulator.

Synchronization among the processes is dependent both on the sharing exhibited by the

algorithms of the program, and on particular architectural features being simulated, such as the

size of the caches and the cache hit and miss times. Because of the latter factor, the synchroni­

zation mechanisms (locking, unlocking and synchronization barriers) are implemented as part

of the simulator. The order in which processes obtain locks and reach barriers, and the fre­

quency and length of busywaiting for each type of synchronization, is therefore determined by

4 See a des'-Tiption of the programming paradigm in section 3.3.

51

the dynamic behavior of the simulated processors. The exact order in which processors

obtained locks and reached barriers on the generation machine is not used, and, consequently,

busywait sequences for both were stripped from the traces. Busywaiting for locks and barriers

is simply repetitions of code sequences for obtaining the lock and checking the barrier flag.

Both could be detected through interactive runtime identification.

In the ELXSI-generated program, SPICE, coherency was maintained via software

methods. Since I intended to study distributed, hardware coherency techniques, all memory

references reflecting the software implementation, such as cache flushing instructions. were also

eliminated from the traces. These were identified during postprocessing by pattern matching on

specific opcode vali.les that had been detected at runtime.

In addition to the postprocessing needed specifically for sharing, routine consistency

checks were done on both addresses and instructions. The checks insured that (1) all addresses

were valid for their type (instruction or data), (2) data addresses were in the proper stack, heap

or constant address ranges, as appropriate; (3) instructions contained the proper number of

operands for their addressing modes; and (4) opcodes were legal for the type of instruction.

After postprocessing, the traces contained the address of the memory reference, the type of

reference (instruction, load operand, store operand), its shared code (for data: private data, a

lock or applications shared data, cacheable or noncacheable; for instructions: the beginning and

end of a lock or unlock routine, the beginning of a busywaiting sequence, a barrier, or a

coherency-related instruction which should be ignored by the simulator), whether the reference

was from the user program or the runtime library, the number of execution cycles on the genera­

tion machine and the opcode, both only for instructions.

Finally, both the Sequent and the ELXSI have variable length instructions and data. The

number of bytes actually transferred during the memory accesses was also determined during

postprocessing, based on the particular opcode and data type. Therefore postprocessed traces

52

contained additional memory references for all accesses that were larger than four bytes. This

provided correct processing when varying the cache block size in the simulations and made the

traces independent of the particular block and word size of the generation machine. 5

3.4.2. Trace Compaction Using a Cache Filter for Parallel Programs

An additional problem of trace-driven simulation is the large quantity of disk storage

required for the traces. This amount can be excessive even in uniprocessor systems, because a

fairly large snapshot (in numbers of memory references) is needed to obtain statistically

significant results. As cache sizes increase, this number mushrooms. The problem is exacer-

bated in multiprocessor simulations, because the size of traces for parallel programs is directly

proportional to the number of processors being simulated. For example, the 6 million reference

(per processor) traces used in this dissertation, after postprocessing, comprised approximately

1.8 to 2 gigabytes for each 11 or 12 processor Sequent trace and .9 gigabytes for the 5 processor

SPICE. Practically speaking, the traces must be compacted to be usable. Traditionally, encod-

ing schemes, such as Ziv-Lempe1 compression [Ziv78], have been used. Memory reference

traces that are used for cache studies can be further reduced by special techniques, such as cache

filtering.

Uniprocessor cache filters reduce the size of memory reference traces by removing all

cache hits from the trace. The filter is a cache simulator, whose input is the original trace, and

which outputs trace records of cache misses and summary information of the missing cache hits .

.
In other words, only those references that cause bus operations are explicitly recorded in t"'e

filtered trace. There are two restrictions on the configurations of caches that are analyzed with

the filtered traces. Both restrictions guarantee that caches of varying sizes see a correct hit/miss

usage of :efcrences. First, the analyzed caches must contain no fewer sets than the cache simu-

lated in the filter, second, they must use the same block size as the filtered cache.

5 The word size on the ELXSI 6400 is 64 bytes.

s:

The stack deletion filtering technique, described in [Smit79], was developed to analyze

program paging behavior, but can easily be adapted for cache studies. In the most general ver­

sion of the scheme references to the first D-1 positions (D being the deletion parameter) in an

LRU stack of memory references are removed from the trace, and a counter, reflecting the

amount of processing time required for the number of references that were eliminated, is output­

ted with the next recorded reference. For one million reference traces, the technique achieves a

reduction in trace length (where length is defined in numbers of entries) of a factor of 14 to 36,

when D is, for example, 6. However, since the algorithm is not directly tied to a cache simula­

tion, some error in the hit/miss classification is introduced when using the compressed data,

when D is greater than 2. The error should decline as cache size increases.

[Puza85] represents the summary cache hit information with runlengths of consecutive

hits. For caches ranging from 4K to 16K bytes, with 64 and 128 byte blocks, his method pro­

duces a flltered trace approximately one tenth the size of the original. My technique for parallel

traces was adopted from this approach.

The compression technique in [Samp89] records the difference between the address of the

reference that hits in the cache and the one that most recently missed in the same block.

Because it exposes the patterns of locality in memory references, it produces traces that are

good candidates for further compression by the schemes that rely on pattern matching tech­

niques. When used as a preprocessor to Ziv-Lempel compression, the technique produces

compressed files at least as small as [Puza85]. Although it does not compact as well as other

schemes, it retains all information from the original trace. Therefore the original trace can be

reconstructed, for example, to regenerate traces for a different block size or smaller cache size

by one of the more tightly compacting methods.

Because of the additional bus operations caused by sharing, I broadened the criteria for

reference elimination by cache filters for traces of parallel programs from Puzak's simple

54

hit/miss model to a filtering technique that is based on any change of state. In this more general

scheme, state is defined as the superset of cache state, dirty/clean state, coherency state and syn-

chronization state.6 Cache state is the criteria used in [Puza85]; it differentiates between valid

and invalid blocks, and is required to support the hit/miss criteria. Dirty/clean state distin-

guishes between the first write to a block and all others. It is needed for two reasons. First,

only the first write in a sequence of per processor writes generates a bus operation (the invalida-

tion signal) in the write-invalidate protocols; and, second, dirty, private data must be copied to

memory on block replacement.

Coherency state includes the five MOESI values (invalid, private clean, shared clean,

private dirty, shared dirty). Generating a memory reference for any potential change of

coherency state essentially means that all shared operands are outputted. All write-shared refer-

ences must be recorded, because it cannot be determined a priori, which will result in a bus

broadcast in the write-broadcast protocols. Read-shared operands must also be included,

because in the write-invalidate protocols, write hits produce a different bus operation (an invali-

dation) than write misses (a full data transfer). For the hit to be detected, the block must already

reside in the cache when the write occurs.

Synchronization state comprises a processor's first attempt to obtain a lock, its acquiring

the lock, its unlocking it, its reaching a barrier or flushing the cache. Memory references that

correspond to these coherency-related instructions (i.e., instructions that implement locking and

unlocking, reaching a barrier, and executing software coherency mechanisms) must also be out-

p;;ued. If not explicitly recorded in the filtered trace, the multiprocessor simulator would be

unable to ignore and/or replace them with other sequences of code (see section 3.4.1).

6 [Thom8S] uses a similar state definition as the basis for a technique for simulating multiple sized caches in a

multiprocessor and shows that certain aspects of the definition (dirty/clean state and coherency state) obey the cache

inclusion property. ([.Matt70] showed that cache state, i.e., validity, obeyed inclusion in their development of the

stack analysis technique for analyzing cache behavior.) It is this inclusion property that allows multiple sized caches

to be simultaneously simulated or filtered.

55

Explicitly specifying these output records leaves runlengths only to hits of instructions

and private data (excepting the first write to the blocks).7 The amount of trace reduction

achieved by substituting runlengths for trace records is called the compression ratio. The

compression ratio is defined as the number of items in all runlengths (number of references

eliminated), divided by the total number of memory references. The compression ratio for 6

million reference versions of the traces in this dissertation, using a 16K byte cache filter with 4,

8, 16 or 32 byte blocks, ranged from .82 to .85 for CELL, .72 to .86 for SPICE, .85 to .89 for

TOPOPT and was .86 for VERIFY. Expressed in the inverse terminology, the filtered traces

were, on the average, 15 percent of the original, unfiltered traces. When further compressed

with Ziv-Lempel encoding, the final traces were approximately 4.5 percent of the originals.

3.5. The Multiprocessor Simulator

3.5.1. Its Underlying Architecture

The parallel simulator (named "charlie", after Snoopy's well known master) emulates a

simple, shared memory architecture, in which a modest number of processors (five to twelve)

are connected on a single bus. The CPU design is RISC-like [Patt85], assuming one cycle per

instruction execution. Not all instructions follow this model, e.g., multiply and divide; there-

fore the bus utilization results (Chapters 5 and 6) will be slightly overestimated and throughput

underestimated (Chapter 6), because the simulation processors return to use the bus more

quickly than in a real machine. All other metrics used in the studies, for example, cache miss

rates and numbers of bus operations, should be unaffected. Since each processor executes

7 The runlengths were further subdivided into separate runs of contiguous reads and writes. The subdivision

was required to ensure correct simulation, because the simulator's cache controller design implemented one-cycle

cache reads and two-cycles cache writes.

56

almost identical code8
, assuming faster times for a small subset of the instructions should slow

down all processors unifonnly. Therefore the order of system-wide shared references should

remain approximately the same as with simulations that follow the cycle times of the generation

machine.9

With the exception of those cache parameters that are varied in the studies, the memory

system architecture of the simulator is roughly that of the SPUR multiprocessor [Hill86]. The

simulator has a one-level cache, on the board; it is direct mapped, with one-cycle reads and

two-cycle writes. There are two copies of the tag and state, one for the CPU, the other for the

snoop. Its cache controller implements segment-based addressing, no fetch-bypass on reads, a

test-and-test-and-set sequence for securing locks [Wood87], and many of the timing constraints

of the actual SPUR implementation. Bus arbitration is implemented using a modified NuBus

protocol [Gibs88], and bus contention is accurately modeled. Several of the architectural

specifications are stipulated at runtime to allow flexibility in changing the studies; examples are

the choice of coherency protocol, the cache configuration (cache size, block size and associa-

tivity), the number of processors, and timing specifications for bus operations, bus arbitration,

and cache controller and snoop functions. The activities of the cache controller and bus are

implemented in fine detail, with separate timing variables for most suboperations; the CPU is a

black box; and, since no program results are kept, main memory and the data portion of the

cache are nonexistent.

3.5.2. Implementation of the Simulator

The simulator is constructed as a group of lightweight tasks, executing within a single

process. Each task has its own stack, which is copied into the stack space of the process, when

8 Except for those processing either the first or last iteration of a loop.

9 Simulations incorporating the cycle times of the ELXSI 6400 and Sequent (National Semiconductor 32000)

processors were run for comparison to the results in Chapter 5. Except for bus utilization, which was lower, all

results were consistent with the ones reported in this dissertation.

57

it is its turn to be executed. The tasks are made to look as though they are running in parallel by

manipulating both systemwide and task-specific clocks (described below). Each task simulates

a component of a multiprocessor, (e.g., a CPU, the processor's cache controller (PCC), the

snooping portion of the cache controller or the bus). A deterministic event-driven simulator

base, Simon [Fuji83, Hell84], handles all task scheduling, and synchronization and message

passing among the tasks. For example, a message may be a cache controller request to the bus

to read a block of data. The bus will not respond to the message until it has finished the current

bus transaction, and the cache controller is next in line according to the NuB us protocol.

There are two sets of clocks in the simulator. The global clock indicates the current time

in the multiprocessor system as a whole. In addition, each task has its own clock that is incre-

mented to reflect the amount of time taken by a particular function, such as a cache lookup or

bus arbitration. All tasks are scheduled by comparing the tasks' private clocks to the global

clock, and then scheduling the task with the minimum private clock value. In the architecture

and coherency protocol-independent simulations used in the sharing model (described in detail

in Chapter 4), the clocks were incremented by a constant value for each memory reference (imi-

tating round robin scheduling of instructions). In the architecturally detailed and protocol-

specific simulations for the studies in Chapters 5 and 6, the increments accurately mimicked the

asynchronous behavior of a multiprocessor system.10

3.5.3. Using the Traces

The traces were generated on a per processor basis. The number of processors in the

simulations is identical to the number of processors used in trace generation. For SPICE this

number is 5, and for the Sequent traces either 11 or 12. Each processor trace is a separate input

stream to the simulator. As described in section 3.4.1, synchronization among the separate

10 Other multiprocessor simulators use round robin scheduling even for realistic simulations, e.g., WASH­

CLOTH [Gott80].

58

input streams depends on the use of locks and barriers in the the programs and is handled

directly by the simulator.

To avoid cold start effects in the simulations, all caches obtain steady state before statis-

tics are gathered. Steady state was determined for each trace separately; 11 simulation statistics

were then gathered on the next 300,000 references per processor (approximately). Several

longer trace snapshots (one and two million references) for SPICE were analyzed for com-

parison to the 300,000 reference data. Most relevant metrics (for example, cache miss ratio and

the number of bus operations for shared data) were stable across the different sample sizes;

those that changed accounted for such a small percentage of total performance that their

increased value was still 'Jf no consequence. For example, the percentage of per-processor

busywaiting cycles within total cycles increased by a third. However, they originally accounted

for only .2 percent of total cycles; therefore the increase was a .06 percent gain in total cycles.

The simulator keeps per processor and system-wide statistics on memory references,

misses, bus operations, bus arbitration delay, coherency-related CPU delay, snoop operations,

consecutive writes to shared addresses, interprocessor contention for shared addresses and

busywaiting for locks and barriers, both in numbers and cycles consumed. Each category is

broken down into appropriate subcategories (for example, type of memory reference or type of

snoop operation); each subcategory is further subdivided into separate statistics for locks and

applications shared data.

11 The teclmique for determining the onset of steady state is similar to that used in [Site88]. I first constructed a

plot of cumulative first reference misses, (i.e., those misses that occur for empty cache locations), versus time, where

time was measured in numbers of memory references. The plots were taken over a six million reference trace for one

processor of each program. Steady state occurs when the rate of first reference misses drops sharply. For the studies

in this dissertation that point was defined to be when the first reference miss rate over the next 300,000 references

(the trace snapshot for all studies) became .002 or less.

59

3.5.4. Multiprocessor Debugging Techniques

The asynchronous nature of generating and satisfying memory requests in a multiproces­

sor make debugging more difficult than for uniprocessor simulators. For example, errors intro­

duced to the state of a cache block by one processor may not be detected until that address's use

by another processor. The amount of time between these events can be considerable (typically

tens of thousands of cycles in these simulations). Two techniques were developed to streamline

the asynchronous activities and catch inter-processor errors.

First, protocol-specific cache controller and snoop operations in the multiprocessor simu­

lator were table-driven. The tables provided a mapping of legal inputs (the type of memory

request, the current state of the block, etc) to correct outputs for carrying out all aspects of satis­

fying memory references (such as the bus operations, state changes and other actions of the

snoops and PCCs). They also guaranteed that illegal combinations of inputs were detected.

Code coverage techniques were applied to the tables to insure that each operation, i.e., that each

cache state transition, executed correctly. The use of the tables also simplified the code for exe­

cuting shared memory references, both for the operations themselves, such as a bus transaction,

and for the side effects, such as snoop interference with a processor request

Second, system-wide assertions of correcmess were provided at certain points in the simu­

lation. Embedded into the simulator was a table of acceptable global cache state configurations,

given the bus operation that had just taken place on the backplane. For example, after a data

read that invalidates other caches under the Berkeley Ownership protocol, only one cache

should hold the block private and dirty; in all other caches, it should be invalid. After each bus

operation, the current state of all caches for the address of the operation was checked for a

match with one of the assertions. Any coherency protocol violations detected by the assertions

halted simulation.

60

3.5.5. Summary

All studies in this dissertation were performed by trace-driven simulation. The methodo­

logical cycle from trace generation to data analysis was as follows. First. memory reference

traces were generated from four parallel programs. Second, the raw trace output was postpro­

cessed to identify shared variables and synchronization points and to eliminate those references

that were specific to the generation machine. Third, the postprocessed traces were compressed,

using a cache filter specially designed for traces of parallel programs. The final step was the

simulation itself, which included statistics gathering and analysis.

61

3.6. References

[Agar88] A. Agarwal and A. Gupta, "Memory-Reference Characteristics of Multiprocessor

Applications under MACH", Proceedings of the 1988 ACM Si~ r:etrics

Conference on Measurement and Modeling of Computer Systems, 16, 1 (1988),

215-225.

[Brgl85] F. Brglez and H. Fujiwara, "A Neutral Netlist of 10 Combinational Benchmark

Circuits and a Target Translator in Fortran", Proceedings of the 1985 IEEE

International Symposium on Circuits Systems, Kyoto, Japan (June 1985).

[Caso86] A. Casotto, F. Romeo and A. Sangiovanni-Vincentelli, "A Parallel Simulated

Annealing Algorithm for the Placement of Macro-Cells", Proceedings of the IEEE

International Conference on Computer-Aided Design, Santa Clara, CA (November

1986), 30-33.

[Clar83] D. W. Clark, "Cache Performance in the VAX-11n80", ACM Transactions on

Computer Systems, 1, 1 (February 1983), 24-37.

[Deva87) S. Devadas and A. R Newton, "Topological Optimization of Multiple Level Array

Logic", IEEE Transactions on Computer-Aided Design (November 1987).

[Fuji83] R M Fujimoto, "SIMON: a Simulator of Multicomputer Networks", Technical

Report No. UCB/Computer Science Dpt. 83/140, University of California.

Berk.eley (September 1983).

[Gibs88] G. A. Gibson, "SpurBus Specification", to appear as Computer Science Division

Technical Report, University of California. Berk.eley (December 1988).

[Gott80] A. Gottlieb, "WASHCLOTH - The Logical Successor to SOAPSUDS",

Ultracomputer Note #12, Courant Institute, NYU (December 1980).

[Hell84] D. E. Heller, "Multiprocessor Simulation Program SIMON", Shell Development

Company (November 1984).

[Hi1186] M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A.

Gibson, P.M. Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S.

A. Ritchie, D. A. Wood, B. G. Zorn, P. N. Hilfinger, D. Hodges, R H. Katz, J.

Oustemout and D. A. Patterson, "SPUR: A VLSI Multiprocessor Workstation",

IEEE Computer, 19, 11 (November 1986), 8-22.

[Ma87] H. T. Ma, S. Devadas, R Wei and A. Sangiovanni-Vincentelli, "Logic Verification

Algorithms and their Parallel Implementation", Proceedings of the 24th Design

Automation Conference (July 1987), 283-290.

[Matt70] R L. Mattson, J. Gecsei, D. R Slutz and I. L. Traiger, "Evaluation Techniques for

Storage Hie':1U"Cr...ies' •, IBM Sysrems Journal, 9. 2 (1970), 78 -. 117.

[McGr86] S. McGrogan, R. Olson and N. Toda, ''Parallelizing Large Existing Programs -

Methodology and Experiences", Proceedings of Spring COMPCON (March

1986), 458-466.

[Patt85] D. A. Patterson, "Reduced Instruction Computers", Communications of the ACM,

28, 1 (January 1985), 8-21.

[Puza85] T. R. Puzak, Analysis of Cach~ Replacement Algorithms, PhD Thesis, University of

Massachusetts, (February 1985).

[Samp89] A. D. Samples, "Mache: No-Loss Trace Compaction", ACM Sigmetrics

Conference on Measurement and Modeling of Computer Systems (1989).

62

[Site88] R L. Sites and A. Agarwal, "Multiprocessor Cache Analysis Using A TUM",

Proceedings of the 15th A!UlUal International Symposium on Computer

Architecture, Honolulu, HA (May 1988), 186-195.

[Smit79] A. J. Smith, "Two Methods for the Efficient Analysis of Memory Address Trace

Data", iEEE Transactions on Software Engineering, SE-3, 1 (January 1979), 94-

101.

[Smit85] A. J. Smith, "Cache Evaluation and the Impact of WoiXload Choice",

Proceedings of the 12th A!UlUal International Symposium on Computer

Architecture, 13, 3 (June 1985), 64-73.

[Thom88] J. F. Thompson, "Efficient Analysis of Caching Systems", Computer Science

Division Technical Report No. UCB/374, University of California.

Berkeley (Spring, 1988).

[Wood86] D. A. Wood, S. J. Eggers, G. Gibson, M.D. Hill, J. Pendleton, S. A. Ritchie, G. S.

Taylor, R H. Katz and D. A. Patterson, ·'An In-Cache Address Translation

Mechanism", Proceedings of the 13th Annual International Symposium on

Computer Architecture, Tokyo, Japan (June 1986), 358-365.

[Wood87] D. A. Wood, S. J. Eggers and G. A. Gibson, "SPUR Memory System

Architecture", Technical Report No. UCB/Computer Science Dpt./87/394,

University of California. Berkeley (December 1987).

[Ziv78] J. Ziv and A. Lempel, "Compression of Individual Sequences via Variable-rate

Coding", IEEE Transactions on Information Theory, 24, 5 (September 1978),

530-536.

63

4 The Write Run Model

4.1. Introduction

In this chapter I analyze the sharing behavior of the four parallel programs. I was

interested in determining both (1) the amount of write sharing in the applications, and (2) the

pattern of multiprocessor accesses to the write-shared data, i.e., whether there was inter­

processor contention for the shared iata (fine-grain sharing) or whether each processor accessed

it multiple times before another processor intervened (sequential sharing.) Both the quantity

and pattern of sharing are important factors in relative coherency protocol performance. The

emphasis here is on the write sharing that is inherent in the application programs themselves,

rather than that caused by the underlying memory system architecture, or the cache coherency

protoc~l. To this end, the sharing study was conducted as independent of the architecture,

implementation, and coherency protocol as possible. Its most important generality was basing

the analysis on the one-word unit of access of the CPU, rather than a specific cache block size.

64

The primary reason for examining sharing behavior is to evaluate the perfolTilance of

cache coherency protocols. I have chosen to compare examples of write-invalidate and write-

broadcast protocols, both of which are subsets of the MOESI classification. The specific types

of protocol were selected, because they are polar opposites in telTils of their approach to main-

taining coherency on bus-based multiprocessors, and they have been widely published and

implemented (see Chapter 2).

To complete the protocol evaluation I first develop a simple (and architecture-

independent) model of write sharing, whose parameter values are derived from the sharing

analysis. The model is based on the inter-processor sharing activity, and reflects the costs of

write sharing under the two protocols. I then compare the model's approximations of protocol

performance to the results of realistic multiprocessor simulations, in which the cache architec-

ture (particularly block size) and coherency protocol specifications of the simulator are very

detailed. Results indicate that the model is a good predictor of protocol perfolTilance for the

write-broadcast protocols. This is primarily because the one-word coherency block1 of these

protocols matches the unit of analysis in the sharing study. However, for write-invalidate the

model is not accurate, because its coherency block is sized to the larger cache block. Write-

invalidate's perfolTilance is quite sensitive to the shared data reference pattern within the block.

When the pattern is one of sequential sharing, with good per-processor locality of reference,

coherency overhead is much lower than for patterns that exhibit fine-grain sharing. By limiting

the analysis to the one-word access of the CPU, the architecture-ind..:pendent .model does not

capture a processor's spatial locality of reference and therefore mispredicts write-invalidate's

coherency overhead. Incorporating the size of the coherency block into the model produces

more accurate results.

1 The coherency block is that portion of the cache block that is effected by a coherency operation. For the

\Vrite-invalidate protocols it is the entire cache line; for write-broadcast, one word.

65

I shall begin the chapter by first briefly reviewing the two distributed, hardware

approaches to maintaining coherency, write-invalidate and write-broadcast, and detailing an

example protocol from each category. The protocols will be used in section 4.3.3 to illustrate

how the values of the sharing metrics vary with different protocols, and again in sections 4.7

through 4.9 in the architecturally detailed simulations. Section 4.3 contains a characterization

of sharing and metrics that reflect the characterization. The characterization is the basis for both

the sharing analysis and the model of write sharing. Section 4.4 covers additional aspects of the

methodology that are particular to the sharing analysis, and section 4.5 presents the sharing

r\!sults. Sections 4.6 through 4.9 address the applicability of the sharing analysis to the two

types of distributed, hardware coherency protocols. First (section 4.6), the model of write shar­

ing is derived from the characterization developed in section 4.3; then, costs reflecting the

sources of coherency overhead for each type of protocol are applied to the model to obtain pred­

ictions of coherency overhead. Section 4.7 compares the model's results to the architecturally

detailed simulations and pinpoints the factors that are responsible for the model's misprediction

of the write-invalidate protocols, most importantly, cache block size; sections 4.8 and 4.9

correct the model by incorporating these factors. Lastly, section 4.10 summarizes the results.

4.2. Write-invalidate and Write-broadcast Coherency Protocols

Cache coherency in bus-based, shared memory multiprocessors is usually enforced by one

of the distributed, hardware coherency techniques. Under these schemes, when a processor

writes to shared data, there are two different procedures that it can follow. It can either invali­

date all other cached copies of the data and then update its own without further bus operations.

Or, it can broadcast the updates to all other caches, so that all processors always have the most

current value of the data. The former method is known as write-invalidate, and the laner write­

broadcast. (For a complete description of the two coherency categories and all protocols in

66

them, see Chapter 2, sections 2.4.2 and 2.4.3.) I am interested in contrasting the relative perfor­

mance of these two coherency approaches in copy-back caches. To do this, I shall introduce

representative protocols in each category, and then use them in the remainder of the analysis.

Berkeley Ownership [Katz85] is a write-invalidate protocol that has been implemented in

the SPUR multiprocessor [Hill86]. It is based on the concept of cache block ownership. A

cache obtains exclusive ownership of a block via two invalidating bus transactions. One is a

special read operation that invalidates copies of the data in other caches, at the same time it

obtains the block for the requesting processor. It is used on cache misses. The second is an

invalidation signal that is used on the first cache write hit. Once ownership has been obtained,

the cache can update a block locally without initiating additional bus transfers. A block owner

also updates main memory on block replacement anc provides data to other caches upon

request. All cache-to-cache transfers are done in one bus transfer, with no memory update.

Because it creates a data writer that can access a shared block without using the bus, we expect

Berkeley Ownership to minimize the overhead of maintaining cache coherency in two cases:

when there are multiple consecutive writes to a block by a single processor, and when there is

little fine-grain sharing.

The Firefly protocol uses write-broadcast and has been implemented in the DEC Firefly

multiprocessor [Thac88]. Its processors broadcast writes to shared data, but use copy-back for

private (non-shared) data. The bus-watching snoops assert a special bus line to indicate sharing,

whenever they detect an operation for a block that resides in their respective caches. The

scheme has potential perforrnailce benefits for both private and actively shared blocks. A pro­

cessor knows when a block retrieved on a cache miss is private, because the shared line is not

asserted. Therefore all subsequent writes to the block can take place without further bus

activity. Under Berkeley Ownership, the initial read to shared data provides no hints as to

whether the block is actively being shared; therefore the invalidation signal must always be

transmitted on the first write to a cached block, even if there are no other cached copies.

67

Because it broadcasts all shared updates, the Firefly protocol avoids the ping-ponging of shared

data among caches that would occur with the invalidations of Berkeley Ownership. However,

for data that is shared in a sequential fashion, with each processor completing many accesses to

the data before another processor begins, the write-through policy for shared data may degrade

bus performance.

Bus-related coherency overhead consists of those bus transactions that are (1) required to

maintain coherent caches and (2) whose only function is to do so. They are distinct from bus

operations that fetch data on cache misses and flush it to memory on block replacements. The

two distributed, hardware coherency approaches described above each have different sources of

bus-related coherency overhead. In write-invalidate protocols, there are two. The first is the

invalidation signal needed to maintain coherent caches. The second is the cache misses that

occur when processors need to rereference invalidated data These misses, called invalidation

misses, would not have occurred had there been no sharing. They are present because the

shared data had previously been written, and therefore invalidated, by another processor.

In the write-broadcast protocols, the coherency overhead stems entirely from the bus

broadcasts to shared data. They occur for all updates to data that is contained in more than one

cache, and for the first update to an address after the writing processor has the only copy. (In

this case the block has been replaced in the other caches.)

4.3. A Characterization of Sharing and the Sharing Metrics

4.3.1. The Characterization

The characterization of sharing serves three purposes. First, it provides an understanding

of the memory reference patterns of write shared data, i.e., whether there is sequential or fine­

grain sharing. Second, it highlights the essential differences between the protocols, in terms of

the bus operations they use to maintain coherency. It therefore explains how the different

68

patterns of sharing can affect protocol performance. Third, it is used as the basis for sharing

models (see sections 4.6 through 4.9) that approximate the coherency overhead of particular

protocols.

I have based the characterization on two aspects of memory accessing: the number of

sequences of single processor writes to an individual shared address, and the length of these

sequences. Both can be portrayed by the notion of a write run, which is the central concept of

the characterization (Cf. Figure 4-1). A write run is defined as a sequence of write references to

a shared address by a single processor, uninterrupted by any accesses by other processors. It is

Address A

< CPUl writes (begins CPU 1' s write rWI)

I
0
0 (additional reads/writes by CPUl)

Write Run
0

forCPUl < CPUl writes

< CPU2reads (ends CPUJ's write rWI)

< CPU3 reads (a read that is not part of a write rWJ)

< CPU3 writes (begins CPU3's write rWI)

Write Run

I
0

forCPU3 0 (additional reads/writes by CPU3)
I 0

:< CPU3 writes

I

:< CPU2 reads (REreads) (ends CPU3's write rWI)

I
I<

CPUl reads (REreads)

I

Time Line '.!/

Figure 4-1: Example Write Run for a Shared Address

A write run is a sequence of write references to a shared address by a single processor. It begins with the

processor's first write to the address (e.g., the first "CPUl writes"), and ends with the first access by

another processor (e.g., the first "CPU2 reads"). The second occurrence of "CPU2 reads" illustrates an

external reread. It is a reread, because the address was read previously (the first "CPU2 reads"), but was

invalidated (the first "CPU3 writes"). The vertical arrows denote the time over which the the write run

occurs; the number of writes in this interval is the length of the write run (both are at least 2).

69

initiated by a processor's first write to the address. contains additional reads or writes by that

processor, and is terminated by the first access by another processor, either a read or write.

(This latter access is called an external read or write, because it is external from the point of

view of the processor that is the current writer of a write run.) Write runs are nonoverlapping

units; and each shared address has a different sequence of write runs.

A write run could contain read references, as well as writes. This analysis will focus on

writes (with one exception, external reads. which are discussed below), since shared writes

cause coherency overhead, and most reads are handled identical:y in both protocols. In both the

write-invalid~te and write-broadcast protocols, additional bus operations are required to main-

tain coherency on writes. In each case the overhead is different. For example, in Berkeley

Ownership the initiation of a new write run results in an invalidating bus operation; however, in

the Firefly each write in a write run potentially causes a bus operation.

Most reads, on the other hand, do not affect the pattern of shared accesses and conse-

quently the variation in performance due to the particular coherency protocol. The initial read

to an address by each processor is always a miss; and, given an infinite cache assumption

(explained in section 4.4.1), reads within a write run are all cache hits. Each type of read takes

the same number of cycles, regardless of the coherency approach adopted.

However, reads are important to track in two cases. First, an external read can be the

cause of the termination of a write run. The number of initial, per-processor external reads after

a write run is an indication of the number of processors actively sharing an address.2 If the

external reads are rereads, they are a cause of coherency overhead in write-invalidate protocols,

the invalidation misses described in the previous section. (The two terms, external rereads and

2 Passive sharing is a phenomenon of the write-broadcast protocols. It is caused by shared addresses that were

accessed at one time and still remain in a processor's cache. Although they are no longer being referenced by their

processor, their presence in the cache drives the shared bus line, causing needless bus broadcasts by the processor

that is accessing them. An analysis of the additional broadcasts, over varvinl' cache sizes, and the resulting loss in

performance appears in Chapter 6.

70

invalidation misses, will be used interchangeably, depending on th context External rereads is

a more general, protocol-independent description and describes aspects of the write run charac­

terization and model. Invalidation misses are external rereads, when applied to write-invalidate

protocols; I will therefore use this tenn in discussions of protocol-specific coherency overhead.)

Second, including reads in the counts of references within a write run provides an accurate basis

for measures of locality.

The write run characterization of sharing portrays the sources of bus-related coherency

overhead for the write-invalidate and write-broadcast protocols. For write-invalidate,

coherency costs occur for the first write in a run, which is the invalidation signal, and for the

external rereads or invalidation misses. For write-broadcast, each write within a write run

causes coherency overhead.

[Agar88] describes a similar characterization, based on the notion of pings and clings. A

ping is an external read or write; a cling is one of the references within a write run. Their paper

focuses on the temporal locality of shared references by measuring the time distribution

between pings and clings. They found that the temporal locality of pings and clings was

equivalent, and hypothesized that the fine granularity of parallelism in their programs (roughly

100 instructions) was responsible for the low ping locality figures. Other portions of this paper

tie into the write run metric results from the analysis of sharing; the two sets of results will be

compared in section 4.5.

4.3.2. The Write Run Metrics

The write run metrics used to analyze sharing appear in Table 4-1. The length of a write

run is measured in numbers of writes. Beginning with the first write to a shared address by a

particular CPU, the number of writes by that CPU is counted until the first access by another

CPU. The count of per-processor first external rereads is the number of different processors L"lat

reread the address after a write run. This metric indicates the number of processors that are

71

actively sharing the address.

The sharing ratio and the number of busywaiters measure the level of sharing and conten-

tion •. respectively. The sharing ratio is the total number of write runs divided by the number of

shared addresses written by one or more processors. The sharing ratio for one address is simply

the number of write runs that occurred for that address. The metric of interest here is the aver-

age over all write-shared addresses. (It is not necessary to normalize the sharing ratio to the

length of the trace, since all trace snapshots are identical, approximately 300,000 references per

processor.) The sharing ratio provides intuition about the level of sharing. Lower values indi-

cate less sharing, while higher values signify more. The metric is an average for the entire

trace, covering accesses to both locks and applications shared data. The number ofbusywaiters,

on the other hand. measures contention for a subset of the addresses, i.e., only those for locks.

The number of busywaiters is the number of processors that are blocked waiting for a lock when

it is unlocked. Like the sharing ratio, a higher metric value indicates greater lock contention.

4.3.3. Applying the Metrics

The write run metrics are useful for analyzing the performance tradeoff between the

write-invalidate and write-broadcast protocols. A long write run suggests that a write-invalidate

I Metric
Cou.11t of writes in a wri~e run
Count of per processor first external rereads

Sharing ratio
Number of busvwaiters for a lock

jl Aspect of Sharing It Measures Jl

Table 4-1: Sharing Metrics Based on Write Runs

This table lists the write run metrics and the aspects of sharing that they measure. The metrics are

described in detail in the text.

72

protocol should be adopted. After the invalidation signal for the first update, all other writes by

that processor can take place locally; therefore the cost of the invalidation signal is amortized

over the entire run. On the other hand, write-broadcast would perfonn better with short write

runs, particularly those of length one. In this case both approaches incur a coherency-related

bus operation for the first write; but write-broadcast avoids the read misses of the write­

invalidate schemes.

The number of external rereads measures a source of coherency overhead in the write­

invalidate protocols only. A large number of external rereads indicates that the addresses would

have been needlessly invalidated had the coherency protocol been write-invalidate, and that a

write-broadcast scheme would therefore have been preferred. On the other hand, a low number

of rereads suggests that the invalidations may have done little hann.

The performance of the two coherency approaches depends on the combined effects of

these measures. Even if the write run is short, but there is no sharing, e.g., no external rereads

for the address, a write-invalidate scheme still might produce the better perfonnance. The

opposite situation calls for write-broadcast if the number of bytes transferred by external

rereads is greater than those updated by the number of broadcasts in the write run length, that

approach is better.

Write run length may also indicate whether there is contention or fine-grain sharing for a

shared address, or whether it is shared sequentially by each processor over long periods of time.

Short write runs, particularly those occurring in a short time interval, suggest that a processor's

algorithmic use of the data was interrupted by other CPUs also referencing the address, i.e.,

fine-grain sharing. Contention is also greater: the greater the number of external rereads, the

higher the sharing ratio and the larger the number of busywaiters for a lock. As was explained

in section 4.2, write-broadcast protocols are well suited for periods of contention, while write­

invalidate performance suffers.

73

4.4. Sharing Analysis Criteria

The objective of the sharing analysis is to focus on the sharing inherent in the application

programs, and abstract away the architectural and implementation details of the multiprocessor,

which could affect the pattern of sharing. For example, in write-invalidate protocols the unit of

invalidation is the cache block. If the block size is larger than a word, then invalidations due to

processor writes will unnecessarily nullify the other words in the block. If those words are sub­

sequently accessed by different processors, additional bus reads will be incurred to obtain the

data. The number, type and order of these bus operations will depend on the particular block

size chosen. If the sharing analysis focuses on the shared addresses being referenced rather than

the block size, the results will not be perturbed by changes in block size.

An analysis of sharing that is independent of the underlying architecture and the

coherency protocol has several advantages. First, it provides an understanding of the memory

reference pattern of write-shared data that is inherent in the applications themselves. These

results can be used to determine coherency overhead for a variety of coherency protocols and

cache architectures. Second, for a single trace, only one simulation need be done (as opposed to

one for each combination of architecture and protocol parameter values). Third, the sharing

simulator is simpler to implement than one that precisely models the features of a particular

architecture and coherency protocol. (For example, the details of bus arbitration and bus tran­

sactions, snoop activity, and cache controller/snoop interaction over the use of the cache were

omitted in the sharing analysis). Therefore both simulator design time anq simulation run time

are shorter. For these reasons, the sharing study was conducted as independent of the architec­

ture, implementation, and coherency protocol as possible. The next two subsections describe

how this was accomplished.

74

4.4.1. Architecture/Implementation Independence

Independence from the underlying multiprocessor architecture and its implementation is

achieved in several ways. First, the simulations assume infinite caches to eliminate the effect of

cache size on block placement In an infinite cache there is room for all references, and no

blocks need to be evicted and consequently reaccessed. Reaccessing increases both bus traffic

and miss ratios of shared data directly, and has an indirect effect by altering the order of proces­

sor accesses to the bus, thereby changing the pattern of shared accesses.

Second, addresses are tracked, rather than cache blocks, so the analysis is based on the

unit of access of the CPU. This eliminates the effect of changing the cache block size, and is

equivalent to setting the block size to one word in the simulator.

Third, all memory references take the same amount of time, regardless of whether they are

reads or writes, hits or misses, or the misses are satisfied by main memory or another cache.

The differences in the amount of time required to carry out these alternatives (in a real system)

is sensitive to the memory organization, particularly memory latency, the bus transfer time, and

the cache controller implementation.

Fourth, memory references are satisfied on a per processor, round robin basis, to give all

processors equal processing time.

Lastly, the cycle time per instruction is a constant. Varying the instruction time to mirror

the underlying implementation affects instruction latency, which, again, alters the global

sequence of shared accesses by modifying the order in which processors obtain the bus. An

argument could be made that instruction cycle times of the generation machines should be

included in the simulation, because the particular choice of instructions reflects the semantics of

the parallel algorithm. However, in the current programming paradigm (explained in Chapter 3,

section 3), all parallel processes are executing the same code. Thus the variation in instruction

times would be identical across processors.

75

4.4.2. Coherency Protocol Independence

Results of the architecturally detailed simulations (see section 4.7) indicate that the

metrics associated with multiprocessor performance, and the sharing aspects in particular, are

sensitive to the timing differences introduced by the choice of cache coherency protocol. The

differences affect the amount and pattern of sharing and the execution time of the program in

three ways: directly, by causing different bus events to occur, and indirectly by (1) altering the

multiprocessor (systemwide) order of references to shared data and (2) varying the amount of

busywaiting needed to obtain a lock. Therefore the sharing simulations were done without

introducing protocol-related variations, i.e., with no bus-related overhead involved in carrying

out the sharing operations. Under this coherency model, accesses to shared data are still tracked

and coherency maintained, but with no cost in time.

4.4.3. Synchronization

Two aspects of processor synchronization (and their corresponding overhead) are still

included: barriers and busywaiting for locks. Both of these constructs are reflections of the

underlying algorithm. Barriers prevent processes from executing beyond a certain point in the

algorithm, until all parallel processes have reached that point. They are used to guarantee a

correct ordering of phases of the program, e.g., to separate time steps in a circuit simulation.

Busywaiting is more difficult to justify. One could argue that busywaiting should be elim-

inated, because it reflects the timing constraints of the underlying architecture and the policy of

the cache coherency protocol,3 as well as the algorithm. However, under the assumption of

architecture and coherency protocol independence, the busywaiting that occurs is a reflection of

contention for the shared locks inherent in the application's flow of control.

3 For example, the extent to which busywaiting is done either over the bus or locally in the cache varies among

protocols.

76

4.5. Results of the Sharing Analysis

This section contains the results from the architecture- and protocol-independent sharing

analysis. Statistics for the traces by type of reference appear in Table 4-2. The nonsharing-

related figures are within the normal range of uniprocessor program behavior. The important

figure for sharing analyses is the low percentage of shared accesses4
, particularly to write-shared

data. Recall that the traces contain applications references only; no references to shared operat-

ing systems data structures are included. Therefore, unless operating systems activity adds sub-

stantially to the number of write-shared references,5 memory references due to coherency over-

head will be a small component of the total. However, they may still comprise a substantial

proportion of total bus operations, since most references to write-shared data result in a bus

transaction, and many board-level caches have fairly low miss ratios (see Chapters 5 and 6).

A further classification of shared references by type of data appears in Table 4-3. Note the

preponderance of references to applications shared data level over the locks that protect it. In

three of the programs applications shared data is only accessed within critical sections. The

paucity of references to locks suggests that there is little contention for this data. A higher per-

centage of reads over writes for lock data (e.g., in CELL and SPICE) means that there was

busywaiting for the lock. A lock write value exactly twice that of the reads (VERIFY) signifies

a total absence ofbusywaiting. The locking algorithm is the test-and-test-and-set sequence used

in the SPUR multiprocessor: the read is the initial access of the lock; the two writes are for set-

ting and clearing. (TOPOPT does not use locks; it protects its shared data with barriers and the

semantics of the algorithm, i.e., within a particular phase of the program there are multiple

readers for a shared address, but only one writer.)

4 Shared data is defined to be those addresses that reside in a program's shared memory. References to them

are included in these figures, whether the data is currently being shared or not

s Results from the first trace-driven study that includes operating systems references indicate otherwise.

[Agar88] found that references to shared data in MACH comprised from .5 to 1.8 percent of total references and 3.5

to 12.5 percent of total shared data references (for both user and system).

77

Basic Trace Statistics

Trace Refs Code Data Reads Writes Private Shared Read Write

(1000s) (Data) (Data) (Data) (Data) Shared Shared
(Data) (Data)

_{proponion of total references)

CELL 3,732 .546 .454 .356 .098 .310 .144 .131 .013

SPICE 1,538 .629 .371 .256 .115 .283 .089 .070 .019

TOPOPT 3,300 .662 .338 .316 .022 .196 .142 .139 .003

VERIFY 3 605 .682 .318 .255 .063 .187 .131 .121 .010

Table 4-2: Basic Trace Statistics

Basic Tr:'ce Statistics: Details of the Shared Data

Trace Shared Applications Shared Data Locks Shared

Refs Total Reads Writes Total Reads Writes Data

(1000s) (ProP< rtion of shared references)
Space I

(Kbvtes) ,

CELL 537 .915 .827 .088 .085 .081 .004 326.6

SPICE 136 .899 .697 .202 .101 .091 .010 26,431

TOPOPT 470 1.000 .980 .020 .000 .000 .000 22.2
I

VERIFY 472 .993 .919 .074 .007 .002 .005 114.5

Table 4-3: Shared Data Trace Statistics

The number of references is the total processed in the sharing simulation. The proportions are the arith­

metic means across all processors. They were calculated from the simulations results, assuming architec­

ture and protocol independence. The nonsharing-related figures are within the normal range of unipro­

cessor program behavior. The proportion of reads to writes only seems high, because the ratios include

references to shared data. Ratios of reads to writes for private data are comparable to other studies (for

example, [Smit85]), for three of the traces (2.6 for CELL, 1.9 for SPICE and 2.6 for VERIFY). The only

exception is TOPOPT (9.1). The shared data ratios are in line with previously published figures. In

[Dare87] the proportion of shared accesses to total was .03, .14 and .12 for three scientific applications

(molecular dynamics, Fast Fourier Transform and fluid dynamics, respectively). Ratios of shared to total

data were .24 for SPICE, .32 for CELL, and .42 for TOPOPT and VERIFY. The _figures for SPICE and

CELL agree with the .27 average for three similar applications reported in [Agar88]. The higher propor­

tion of private to shared data for SPICE is probably attributable to accesses to local copies of read-shared

data. The column headed "Shared Data Space" is the number of bytes allocated to all shared data. In all

traces except SPICE, it is the amount of shared memory required to execute the program on the particular

input used. SPICE was written in Fortran; therefore the shared space was statically allocated to fit inputs

of varying sizes.

Histograms for the length of the write runs and the number of external rereads are sho\VTI

78

Write Run Len!!th Histogram
Traces

Run CELL SPICE TOPOPT VERIFY

Length % % % % % % % %

Bins Write Writes Write Writes Write Writes Write Writes

Runs Runs Runs Runs

1 71.6 26.3 66.1 35.2 60.5 9.2 30.4 3.8

2 13.9 10.2 21.5 22.9 10.9 3.3 43.7 11.0

3 2.8 3.1 3.6 5.7 4.6 2.1 5.4 2.0

4 2.1 3.1 4.0 8.6 7.3 4.4 4.7 2.4

5 0.9 1.7 0.7 2.0 3.1 2.3 1.4 0.9

6 0.4 1.0 0.1 0.2 1.1 1.0 1.8 1.4

7 1.1 2.8 0.4 1.4 1.1 1.2 0.7 0.6

8 0.7 1.9 0.4 1.7 1.6 1.9 0.8 0.8

9 0.9 2.9 0.0 0.0 0.5 0.7 0.2 0.3

10 1.0 3.7 0.0 0.2 0.2 0.3 0.4 0.5

11 1.1 4.5 2.6 14.9 0.4 0.7 0.2 0.3

12 0.3 1.5 0.4 2.8 0.1 0.2 0.7 1.1

13 0.4 1.9 0.0 0.1 0.1 0.2 0.5 0.8

14 0.3 1.4 0.0 0.0 0.1 0.1 0.4 0.6

15 0.0 0.0 0.0 0.0 0.4 0.9 0.5 1.0

16 0.1 0.3 0.0 0.1 0.1 0.3 0.1 0.3

17 0.1 0.4 0.0 0.0 0.2 0.4 0.2 0.4

18 0.1 0.9 0.0 0.0 0.2 0.6 0.2 0.3

19 0.1 1.0 0.0 0.0 0.4 1.2 0.0 0.1

20 0.3 2.5 0.0 0.0 0.3 0.8 0.1 0.3

>20 1.7 15.6 0.2 2.3 6.8 46.2 7.6 51.2

Total
Write 20959 15684 1864 5834

Runs
Avg.
Write 2.36 1.84 5.13 6.37
Run
Length
Total

I 57063 29439 12231 46473
Writes

Table 4-4: Length of the Write Runs

This histogram depicts the percentage of write runs that have a particular write run length and the percen­

tage of total writes that they contain. The traces were heavily biased toward write runs that contained

only one write. With the exception of VERIFY, approximately two-thirds of the write runs for each trace

had one write. Despite this, the average write run length for TOPOPT was long enough to suggest that a

write-invalidate coherency protocol would be most appropriate for it

in Tables 4-4 and 4-5. For two of the traces, CELL and SPICE, the write runs are short. Their

79

average write run lengths are 2.36 and 1.84 writes, respectively, and most of their write runs

contain only one write (.72 for CELL; .66 for SPICE). In isolation, write runs this short argue

for a write-broadcast protocol. However, the situation may change given the few external

rereads. The average number of external rereads for CELL and SPICE is close to one (CELL =

1.26, SPICE= .89), and a high percentage of their write runs were terminated by one or fewer

rereads (CELL= 79%, SPICE= 99.5%).6 With the number of rereads this small, the invalida-

tions in a write-invalidate scheme would cause little additional coherency overhead in terms of

invalidation miss bus traffic. However, both writ~ run length and the number of rereads are

External Rereads Histo_nam
Traces

External Rereads Bins CELL SPICE TOPOPT VERIFY

% % % %

0 29.7 11.4 68.4 12.1

1 49.6 88.1 9.3 76.1

2 10.8 0.4 8.1 8.2

3 3.3 0.1 2.7 3.6

4 1.4 0.1 0.5 0.0

5 0.8 0.0 0.2 0.0

6 1.1 0.0 0.2 0.0

7 0.9 0.0 0.0 0.0

8 1.3 0.0 0.0 0.0

9 0.8 0.0 0.0 0.0

10 0.5 0.0 10.6 0.0

11 0.1 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0

Total External Rereads 17506 9575 886 2961

A vg. External Rereads 1.26 0.89 1.44 1.03

Table 4-5: Number of External Rereads Following a Write Run

This histogram depicts the percentage of write runs that were followed by a particular number of external

rereads. The graph indicates that a single or no external rereads terminated most of the write runs in all

traces. Tnis means that there was a very low level of multiple processor contention for the shared vari­

ables, and argues for a write-invalidate coherency protocol.

6 No external rereads occur when the end of a write run is the beginning of the next. In this case the terminat­

ing access is a write by the new processor.

80

sufficiently low that a clear protocol choice cannot be made.

The average write run lengths for TOPOPT and VERIFY are longer (TOPOPT = 5.13,

VERIFY = 6.37); and for VERIFY the write runs of length one constitute less than one third of

the total. The average number of external rereads are as low as for the other two traces

(TOPOPT = 1.44, VERIFY = 1.03), and the percentage of write runs ending with one or fewer

rereads is also comparable (TOPOPT = 78%, VERIFY= 88%). The combination of the long

write run length and the low number of external rereads for these traces indicates a match with a

write-invalidate protocol.

Results in [Agar88] are lower than the write run length figures reported here, presumably

because of the finer granularity of parallelism in the programs. The average write run length for

data in their three CAD applications is 1.5. Including operating systems references only

increased the average write run length by 5 percent.

Three factors indicate that contention in the traces is low. The first is the low number of

external rereads mentioned above. Few rereads indicates that few processors are simultane­

ously accessing the same shared data. Second, the sharing ratio is also low (see Table 4-6). A

low level of sharing indicates little contention. The ratio of write runs per total shared write

addresses referenced averages 2. 7 during trace runs of 300,000 memory references per proces­

sor. The amount of computation in the applications is large relative to the frequency of write­

shared references, and, as established above, the pattern of access to these addresses is sequen­

tial. Therefore a 300,000 reference snapshot is not sufficient to capture repeated sharing of the

data in the work queue that occurs over many iterations of the algorithm. This is a comment on

the low level of sharing in the traces, rather than the insufficient size of the trace sample. If a

larger section of trace were analyzed, the same level of sharing would have been exhibited: both

the sharing ratio and the time period (measured in numbers of memory references) would

81

Sharing Ratio

Trace Value Time Period
(mem refs in OOO's)

CELL 4.7 3,732
SPICE 2.5 1,538

TOPOPT 1.8 3,300
VERIFY 1.9 3 604

Table 4-6: Sharing Ratio

The level of write sharing in the traces is reasonably low. This is indicated, in part, by the low number of

write runs per shared write address (the sharing ratio) over a long period of time. Time is measured by

the total number of memory references processed. Total write-shared addresses is a dynamic measure of

those locations accessed during the period.

Busvwaiters Histogram
Traces

Bin CELL SPICE VERIFY
(%) (%) (%)

0 86.6 81.8 99.3

1 9.7 14.9 0.7

2 2.7 2.4 0.0

3 0.8 0.6 0.0

4 0.2 0.3 0.0

Total Busvwaiters 998 i 636 1097

Table 4-7: Number of Busywaiters

This histogram depicts the number times a processor was blocked from a critical section because another

processor was executing in it The snapshot was taken when the lock was unlocked, and the count is of

the number of processors busywaiting for it The figures indicate that there was almost no contention for

the locks. At the very least almost 82 percent of all locks were unlocked with no other processor waiting.

(TOPOPT is not depicted, because it does no locking.)

increase.7

Third, there are few processors busywaiting for locks when the lock is unlocked (see

Table 4-7). Between 82 and 99 percent of unlocks occurred with no other processor wanting

the lock. This behavior is partially determined by the programming paradigm. When the

7 As mentioned in Chapter 3.5.3, one and two million reference snapshots of SPICE were also simulated, and

the ratio of the sharing ratio to total memory references was almost constant across the three snapshot sizes.

82

programs first begin execution, there is unusual contention for the locks protecting the queue of

work, since all child processes try to take their first unit of work simultaneously. However, only

one process will obtain access to the queue at a time. Since each process does a comparable

amount of computation, they will thereafter access the queue in the same order, spaced in time

by the execution time of the critical section. This self-scheduling is disrupted by synchroniza­

tion barriers, which are used to separate phases in the computation. The disruption causes more

busywaiting and therefore an increase in references to the locks. However, it occurs infre­

quently, particularly when compared to the longer periods of self-scheduling.

Given all three factors (the low number of external rereads, the low sharing ratios and lit­

tle busywaiting), I conclude that the short write runs depicted in Table 4-5 result from the pro­

cessors' intention to write to the shared addresses only once, rather than the write sequences

being interrupted by accesses from other processors.

In summary, the sharing results of the simulations, independent of the architecture and

coherency protocol, indicate sharing behavior more appropriate for write-invalidate protocols

than write-broadcast for the traces examined. Write-invalidate's performance advantages stem

primarily from the lack of contention for shared data (the small number of external rereads), and

for two of the traces, the long length of the write run. TOPOPT and VERIFY had average write

run lengths of 5.1 and 6.4, respectively, which allows a generous margin between the cost of

one invalidation signal and a per-write bus broadcast within each write run. Of all the traces,

SPICE and CELL were the best candidates for a write-broadcast protocol, because of th~ com­

bination of shorter write runs, slightly longer busywaiting sequences, and a higher sharing ratio.

4.6. The Write Run Model

Architectural modeling is a useful performar1ce technique for several reasons. First, it

provides good intuition about the factors that affect computer performance. It reduces the com-

83

plexity of the architecture to a few key components, and thus provides a means to easily analyze

the interactions among them. The purpose of the write run model is to evaluate coherency over­

head; therefore it is restricted to coherency-related bus events. The model captures references

to shared data that either degrade performance by causing additional bus traffic or are handled

differently in the different protocols. It portrays write sharing activity only, because this is

where the write-invalidate and write-broadcast protocols differ. It is assumed that both

approaches have similar uniprocessor bus utilization, i.e., for private data and instructions. In

addition, both are copy-back schemes. Therefore the model does not include these activities.

A second advantage of modeling is that it produces results relatively quickly. By chang­

ing the model's parameter values, one can explore a large design space in a much shorter period

of time than with trace-driven simulation. This convenience is especially important for mul­

tiprocessor studies, because the simulation time is proportional to the number of processors

being simulated. For the studies in this dissertation, each architecture and protocol simulation

required 7.25 hours of simulation time on an unloaded VAX 8600.

The simple model of write sharing developed here is based on the write run characteriza­

tion. In the model, each state represents a different write run activity. A shared address is

assigned to a state, based on its past write activity and current reference. When a shared address

is accessed, a state transition occurs, as illustrated in the state diagram in Figure 4-2. A transi­

tion is made to the Different Write Run state by a write to a shared address by a CPU other than

the current writer. The number of transitions is the count of write runs for the address. The

Same Write Run state is entered each time a writer continues to write to the address. The

number of transitions here is the total of all write run lengths for that address, excluding the first

write in each run. The transition to End of Write Run is made by the first external read to the

address by each CPU. The total is the sum of all such reads.

per processor initial
external read

per processor initial
external read

START

write by a
different cpu

. first write
(different cpu)

per processor initial
external read

Figure 4-2: Model of Sharing Based on Write Runs

84

This finite state diagram reflects the model of sharing developed from the characterization based on write

runs. A transition is made to the Different Write Run state by a write to a shared address by a CPU other

than the current writer. The Same Write Run state is entered each time a writer continues to write to that

address. The transition to End of Write Run is made by the first external read to the address by each

CPU. By assigning a coherency protocol-dependent cost to each arc in the state machine, an approximate

cost of sharing for a particular cache coherency protocol can be determined.

The model can be used to quantify the intuitive conclusions of the last section. Relative

coherency protocol performance is determined by assigning costs (in cycles) to each arc in the

finite state diagram and multiplying by the transitions for each arc, summed across all shared

addresses. The costs are a measure of the overhead of sharing traffic for a particular cache

coherency protocol and are based on the timing constraints in the implementation of the SPUR

multiprocessor. Cost values assume that the program is in sharing steady state. In sharing

85

steady state shared data is actively being shared by multiple processors. Its use in simulations

ensures that statistics are not gathered during sharing startup, during which only one processor

has cached the shared data and some coherency costs are not incurred. (Sharing steady state is a

notion similar to cache steady state. Cache steady state also avoids a startup situation, i.e., ini-

tial cache filling, so that cold start misses are not included in cache miss ratio calculations.)

Sharing steady state implies that (1) a shared access is not the first reference to that address by a

processor, i.e., after the access, at least two caches have copies; and (2) each external read is

actually a reread, i.e., the processor has previously accessed the address. The first stipulation

insures that the number of bus updates in a write-broadcast protocol can be approximated by the

write run length (the number of transitions to Different Write Run state plus those to Same

Write Run state); the second that external rereads in write-invalidate protocols are equivalent to

external reads (the number of transitions to End of Write Run). The arc costs for Berkeley

Ownership and the Firefly are depicted in Table 4-8.

Costs ofTransitions in the Write Run Sharing Model

Arc Berkeley Ownership Fireflv

Bus Operation Cost Bus Operation Cost
(cvc!es) (cvcles)

Write by a Different CPU invalidation signal 12 word transfer 11

Write by the Same CPU no cost 0 word transfer 11

First Per-processor Exter- block transfer 18 no cost 0

nal Rereads

Table 4-8: Costs of Transitions for Berkeley Ownership and firefly

This table classifies coherency overhead by type of bus operation for Berkeley Ownership and the Firefly.

For each state transition in the state diagram (Figure 4.2), the bus operation required and its costs in cy­

cles are depicted. All bus operations include cycles for address translation, bus arbitration, the bus opera­

tion and the appropriate snoop response, and snoop/cache controller interaction over updating the cache

controller's copy of the state. The block is assumed to be eight words. The small time difference

between the invalidation signal and a one-word transfer is caused by the update of both copies (snoop and

cache controller) of the state for the former. The exact choice of cycle value is based on the implementa­

tion of the SPUR multiprocessor.

86

Figures 4-3 and 4-4 illustrate the model when applied to the write-invalidiate and write-

broadcast protocols. In each diagram, state transitions are depicted only for valid coherency bus

operations. The coherency cost to Berkeley Ownership is the invalidation signal for the first

write in a write run and the rereads for data that were invalidated. Total coherency cost is based

on the sum of these bus operations. The coherency overhead of the Firefly protocol is the sum

of all broadcast writes to shared data. As stated above, this can be approximated by the total

length of all write runs.

The model's position in the total methodological sequence is depicted in Figure 4-5. The

parallel traces are input to a multiprocessor simulator, which is either architecturally abstract

START

Figure 4-3: Write Run Sharing Model for Berkeley Ownership

This state machine diagram applies the write run model to the write-invalidate protocols, as represented

by Berkeley Ownership. State transitions are only depicted for valid coherency bus operations. For

write-invalidate they are invalidation signals to the Different Write Run state and external rereads to the

End of Write Run state.

87

START

BROADCAST

BROADCAST BROADCAST

Figure 4-4: Write Run Sharing Model for the Firefly

This state machine diagram applies the write run model to the write-broadcast protocols, as represented

by the Firefly. State transitions are only depicted for valid coherency bus operations. For write-broadcast

they are bus updates to write-shared data.

t
r

~--7
e
s

t
architecture
parameters

write
run -7

metrics

arc costs

I
coherency
protocor

Figure 4-5: Methodology

~ coherency
~ cycles

This diagram depicts the trace methodology used for the sharing analysis and modeling, both based on

the write run characterization. The details are explained in the text.

88

(for the sharing analysis) or very architecturally detailed (for the realistic simulations). The

simulator's output are the write run metrics that were presented in section 4.5 (write run length,

external rereads, sharing ratio and number of busywaiters), and other figures which will

comprise the results in Chapters 5 and 6. The write run metrics from the sharing analysis pro-

vide the transition frequency inputs to the write run model; other inputs to the model are the

protocol-specific arc costs and the protocol being modeled. The output produced by the model

is total coherency overhead, measured in bus cycles.

The results of the protocol comparison appear in Table 4-9. The absolute values of the

cycle counts should not be taken literally, because of the architecture- and protocol-independent

nature of the studies. What is important is the relative performance of the protocols for a partie-

ular trace. The figures of Table 4-9 support the conclusions of the last section, given SPUR cost

assignments; namely, that for TOPOPT and VERIFY, write-invalidate protocols (as represented

Cost of Berkeley Ownership& Firefly in the Write Run Sharin_g Model

Trace Coherency Diff. Same End of Coherency Normalized

Protocol Write Write Write Overhead to Berkeley

Run Run Run Ownership

(arcs) (arcs) (arcs) (c_ycles)

CELL Berk. Own. 20959 28460 22060 648588 1.00

Fireflv 543609 0.84

SPICE Berk. Own. 15684 13167 8558 342252 1.00

Fireflv 317361 0.93

TOPOPT Berk. Own. 1864 7700 1276 45336 1.00

Firefly 105204 2.32

VERIFY
I

Berk. Own. 5834 31336 3064 II 125160 1.00
I Fireflv 408870 3.27

Table 4-9: Write Run Model Comparison of Berkeley Ownership & Firefly

This table depicts the number of state transitions for each state in the write run model. The total number

of cycles is obtained by multiplying the cost of each arc transition times the arc costs in Table 4-8. The

bold entries indicate which of the protocols had better perfonnance for the particular trace, according to

the architecture-independent write run analysis of sharing.

89

by Berkeley Ownership) obtained significantly better performance than the write-broad:· tst pro-

tocols (as represented by the Firefly). And, conversely, CELL and SPICE have less coherency

overhead with write-broadcast, although the performance advantage is smaller.

It should be pointed out that coherency cycles are sensitive to the overhead in the bus

operations and the transfer size on a block read. In the SPUR implementation, both are high.

For example, the cache controller was implemented assuming that the priority for using the

cache belonged to the processor rather than the snoop. Therefore all arc costs include cycles for

the snoop's negotiating to obtain use of the cache, and acknowledging that it has finished. In

addition, the block transfer cost is based on an eight-word block size. If the arc costs had

reflected a more optimized implementation, e.g., that used in the Firefly multiprocessor, the

cycle cost would have been much lower.8

4.7. Architecture-Dependent Simulations of Snooping Protocols

I determined the accuracy of the write run model in evaluating the performance of

coherency protocols in a real system by comparing the model's predictions with simulation

results, using realistic architecture and protocol parameters. The architecture-independent

assumptions of the sharing analysis (described in section 4.4.1) were dropped in favor of more

specific premises: (1) the realistic simulations tracked the entire coherency block instead of the

one-word unit of CPU access; (2) SPUR's 128K byte, direct mapped cache replaced the infinite

cache, and its 32 byte block served as the.coherency block; (3) cycle times for bus op~rations

were based on the SPUR implementation, rather than being a constant; (4) specific coherency

protocols, Berkeley Ownership and Firefly,9 were implemented, and appropriate cycles

reflecting the costs of their coherency operations replaced the assumption that cache coherency

was free; and, (5) in general, the CPU, memory system and bus architecture closely matched

8 The comparable figures for an implementation similar to the Firefly multiprocessor (using MicroVax IT's)

would be 4 cycles for a word transfer, and, presumably, 4 for an invalidation and 11 for a block transfer, assuming

the SPUR block size.

90

that of SPUR.

The results of the simulations appear in Table 4-10. The data is the number of bus opera-

tions used to maintain coherency in sharing steady state, and the cycles required to carry them

out. Again, the coherency cost (in bus operations) with Berkeley Ownership are the invalida-

tion signals and the reaccesses of invalidated data (corresponding to the sum of Different Write

Run and End of Write Run figures in Table 4-9); for the Firefly, it is the total number of write-

broadcasts to shared data (the sum of Different Write Run and Same Write Run).

The results indicate that the write-run model was a good predictor of coherency overhead,

but for the write-broadcast protocols only (see Table 4-11). The percentage difference between

Cost of Berkelev Ownership & Fireflv in Realistic Simulations

Trace Coherency Diff. End of Diff. + Coherency Normalized

Protocol Write Write Same Analysis to Berkeley

Run Run Write Run Ownership

[Inval. [In val. [Write
Signal] Misses] Bdcasts.]
Lares) _(arcs)_ iarcs) (cvcles)

CELL Berk. Own. 10062 12507 275106 1.00

Fireftv 49419 543609 1.96

SPICE Berk. Own. 4643 3959 132954 1.00

Fireflv 28937 318307 2.39

TOPOPT Berk. Own. 7222 5728 225702 1.00

Fireftv 9564 105204 .47

VERIFY Berk. Own. 16400 25345 629628 1.00

Fireftv 37156 408716 .65

Table 4-10: Comparison of Berkeley Ownership & Firefly in Realistic Simulations

The table contains the number of bus operations needed to maintain cache coherency, assuming a

SPUR-like multiprocessor and sharing steady state, and using either Berkeley Ownership or the Firefly

protocols. The results indicate relative coherency performance opposite to what was predicted by the

write run model. Berkeley Ownership produced fewer coherency cycles than the Firefly for CELL and

SPICE, but had more overhead for TOPOPT and VERIFY. (The bold protocol names indicate the proto­

col with the lower coherency overhead.)

9 The implementation for the Firefly protocol includes the shared bus line.

91

Com_12arison of Realistic Simulation to Models

Trace Coherency Architecture
Protocol Independent

Model
(oercent)

CELL Berkeley Ownership -135.76
Firefly 0.00

SPICE Berkeley Ownership -155.42
Firefly 0.30

TOPOPT Berkeley Ownership 79.91
Firefly 0.00

VERIFY Berkeley Ownership 80.12
Fireflv -0.04

Table 4-11: Comparison of Write Run Model to Realistic Simulation

This table contains the percentage difference in total coherency cycles between the realistic simulations

and the write run model, using the actual cycles as the base. For the Firefly, the total number of cycles

required to carry out the operations matches those approximated by the model. However, for Berkeley

Ownership, in which coherency operations take place on an entire cache block rather than a word, the ef­

fects of the cache block size outweigh those of the sharing pattern in the application. (The bold protocol

names indicate the protocol with the lower coherency overhead.)

the model's predictions and the actual Firefly cost was negligible for all traces. However, the

model mispredicted coherency overhead for write-invalidate. The cycle discrepancy manifested

itself in absolute amounts and in relative protocol performance. The absolute disparity ranged

from 2.4 (CELL) to 5.0 (VERIFY) times. For CELL and SPICE the model forecasted a perfor-

mance loss for Berkeley Ownership relative to the Firefly (19.3 percent more coherency cycles

for CELL, 7.8 percent more for SPICE); and a savings for TOPOPT anq VERIFY (56.9 and

69.4 percent fewer coherency cycles, respectively). In both cases realistic simulations indicated

the reve:-se. Berkeley Ow:1crship provided better coherency performance than the Firefly for

CELL and SPICE (49.4 a..'1d 52.3 percent fewer cycles, respectively), but did less well for

TOPOPT and VERIFY (114.5 and 54.1 percent more coherency cycles than Firefly).

This discrepancy between the realistic simulations's bus operations and the model's state

transitions occurs whenever the coherency block in the sharing analysis does not match that in

92

the real machine. In Berkeley Ownership, the unit of invalidation and reread is an entire cache

block10
; and the block size in SPUR is 32 bytes. The effects of SPUR's large coherency block

overshadow the coherency overhead due to the intrinsic sharing pattern in the applications. The

Firefly results more closely correspond to those of the write run model prediction, primarily

because the coherency block is identical in both the model and the realistic simulations.

The effects of the coherency block produce either a savings or an additional coherency

cost, depending on the inter-processor memory access pattern to words within the blocks. This

pattern can be characterized by two distinct modes of behavior. In sequential sharing, a proces-

sor makes multiple writes to the words within a block, uninterrupted by accesses from other

processors. lnfine-grain sharing, multiple processors contend for one or more words within the

block, and the number of per-processor sequential writes is very low.

Whether a program exhibits sequential or fine-grain sharing affects the amount of

coherency overhead incurred. In write-invalidate protocols sequential sharing reduces

coherency overhead by decreasing both the number of invalidations and the number of invalida-

tion misses. Conversely, when there is fine-grain sharing, the number of invalidations and

invalidation misses is higher. For both types of memory reference behavior, the larger the

coherency block, the more pronounced the effect on coherency overhead (see Chapter 5).

Sequential sharing can benefit both the writer and the readers of a cache block containing

a shared address (See Figure 4-6). For example, after an invalidation, a writing processor
.

possesses the only cached copy of the block. It pays the coherency overhead (the invalidation

signal) for the first write to the block, but can update the remaining words without additional

bus operations. In contrast, the write run model records a separate write run for each word

within the block. Therefore the invalidating signal is counted for the initial write to each word

10 Although coherency block and the cache block are synonymous for write-invalidate in these simulations, I

shall continue to use the term "coherency block" to underscore its semantics.

1 Word Coherency Block

invalidations

~
~
~
~

4 invalidations
4 invalidation misses

4 Word Coherency Block

invalidation

~w~
1 invalidation
1 invalidation miss

Figure 4-6: Sequential Sharing

93

This figure illustrates how sequential sharing for shared data within a large coherency block can reduce

coherency-related bus operations. In both the one-word and four-word diagrams each address is written

by one processor and read by another. The penalty for the one-word coherency block is worse than that

for the four-word, by a factor equal to their size difference. (The arrows move in the direction of time).

in the block, rather than just once, and the spatial locality of reference for shared d~t~ within the

coherency block is missed. An analogous situation exists for the readers. In this case the

invalidation miss penalty is paid only for the first read to the block. All other reads are cache

hits, and are free of coherency overhead. In CELL and SPICE, sequential sharing for the

write-shared data within the 32 byte coherency block decreased both the number of invalida-

tions and rereads.

94

On the other hand, contention for a particular address within a block (fine-grain sharing)

produces more invalidations that interrupt all processors' use of the data in the block and a

corresponding increase in the number of invalidation misses to get it back. The greater the

number of processors contending for an address, the greater the number of invalidation misses.

The problem is exacerbated with a large block size, because contention can occur for any

of the addresses in the block. Alternating writes by different processors to the different words

within a block produce separate invalidations for each write (see Figure 4-7). The invalidations

are responsible for a subsequent rise in invalidation misses. The invalidation misses occur each

time a processor rereads any word in the block. The overhead is paid even when the processor

reads an address that was not updated.

Reads by different processors to the words within an invalidated block also contribute to

the rise in invalidation misses (see Figure 4-8). Recall that an invalidation to one word in a

block causes all other words to be nullified; when the subsequent reads to these addresses are

issued by different processors, additional read misses are incurred to get them back.

In the write run model there are separate write runs for each word in the block, and the

writes to one address do not affect the reads to another. In fine-grain sharing that affects both

readers and writers, accesses that are read misses in the realistic simulations are considered hits

in the modeling analysis, and consequently are not counted as coherency overhead.

Fine-grain sharing was prevalent in the remaining two traces, TOPOPT and VERIFY .
.

Recall that the average write run length for shared addresses in TOPOPT and VERIFY was 5.13

and 6.37, respectively, higher than the other two traces by a substantial margin. With the one-

word coherency block of the sharing analysis, only the first of the writes in these runs caused an

invalidation. However, in the realistic simulations most of the writes caused invalidations,

because of the interleaved (by processor) accesses within the larger (32 byte) coherency blocks.

1 Word Coherency Blocks

hit (q>uO) hit (q>uO) hit (cpuO)

0 inv(q>ul)
0 ----? 0 ----7 0

CIJ~~ inv (cpu!)

m
0
----~lxl inv (cpu!)

[%]
no invalidation misses

4 Word Coherency Block

3 invalidation misses

Figure 4-7: Fine Grain Sharing (for Writers)

95

This illustration of fine-grain sharing depicts the effects of inter-processor write activity for some ad­

dresses in a coherency block on others. In the one-word coherency block (used in the write run model)

the writes to addresses B through D do not affect reads to A; in the four-word coherency block they cause

invalidation misses for each reread, because they invalidate the entire block. (The arrows move in the

direction of time).

4.8. The Coherency Block Write Run Model

The comparisons of coherency overhead between actual simulations and the architecture-

and protocol-independent write run model have demonstrated that the model is too general for

write-invalidate protocols. In order to obtain model predictions that more accurately reflect

actual coherency costs, I incorporated the size of the coherency block into the otherwise

architecture-independent write run model. In the new coherency block model, the unit of (write

96

1 Word Coherency Blocks

inv (cpuO)

0 -7IXI hit(cpul)

[I] >[I]
hit (cpu2)

C£J---~w hit (cpu3)

CQJ-----~w

no invalidation misses

4 Word Coherency Block

3 invalidation misses

Figure 4-8: Fine Grain Sharing (for Readers)

This diagram of fine-grain sharing demonstrates inter-process read contention for different addresses

within a coherency block. For large coherency block sizes, the contention causes additional invalidation

misses. With the one-word coherency block of the write run model, the invalidation misses become

cache hits. (The arrows move in the direction of time).

run) analysis is the entire coherency block, rather than the one-word CPU access . .All other

assumptions of the architecture-independent model still remain in effect.

The coherency block write run model produced much more accurate approximations.

First, for all traces the model correctly predicts the protocol with less coherency overhead

(Berkeley Ownership for CELL and SPICE, and the Firefly for TOPOPT and VERIFY) (see

Table 4-12). Furthermore, the absolute magnitude of the predictions is quite close to actual per-

97

Cost of Berkeley Ownership & Firefly

in the Coherencv Block Write Run Sharing Model

Trace Coherency Different Same End of Coherency Normalized

Protocol Write Write Write Overhead to Berkeley

Run Run Run Ownership

(arcs) (arcs) (arcs) (cvcles)

CELL Berk. Own. 10091 39305 12447 345138 1.00

Firefly 543356 1.57

SPICE Berk. Own. 4493 24358 3760 I 121596 1.00

Firefly 317361 2.61

TOPOPT Berk. Own. 7957 1607 5164 188436 1.00

Fireflv 105204 .59

VERIFY Berlc Own. 16912 20258 26094 672636 1.00

Fireflv 408870 .61

Table 4-12: Coherency Block Write Run Model Comparison

of Berkeley Ownership & Firefly

This table depicts the number of occurrences of each arc in the coherency block write run model. The to­

tal number of cycles is obtained by multiplying the frequency of each arc transition and the arc costs in

Table 4-8. The bold entries indicate which of the protocols had less coherency overhead; these predic­

tions match the outcome of realistic simulations. Notice that for the Firefly the total number of cycles is

almost identical to the architecture-independent results. For both models the total number of bus opera­

tions is the same, although apportioned differently between the Different Write Run and Same Write Run

states. Under write-broadcast, the transitions to both states produce the same bus operations. Therefore

the cost of all operations and consequently total coherency overhead is identical in both models.

Comparison of Realistic Simulation to Models

Trace Coherency Architecture Coherency Algorithmic Finite

Protocol Independent Block Use Cache

Model Model Variation Variation

(oercent) (oercent) (oercent) (oercent)

CELL Berk. Own. -72.29 8.32 4.80 4.47

Firefly 0.00

SPICE
I

Berk. Own. -154.20 9.69 7.37 2.86

: Firefly 0.30 '

TOPOPT Berk. Own. 79.91 16.51 -1.17 -2.32

Firefly 0.00

VERIFY Berk. Own. 81.11 -1.54 -2.83
I

-2.83
I

Fireftv -0.04

Table 4-13: Coherency Overhead:

Comparison of Realistic Simulations to the Write Run Models

This table compares coherency overhead predictions of progressively more architecturally detailed write

run models to the actual overhead in the results from realistic simulations. The results are discussed in

detail in Section 4-9. The bold font indicates which protocol had the lower coherency overhead in the

realistic simulations.

98

fonnance (see the second column of figures in Table 4-13). The percentage difference between

the coherency block model's results and those of actual simulations is 8.32 and 9.69 percent for

the traces with sequential sharing (CELL and SPICE, respectively) and 16.51 and -1.54 percent

for those that exhibited fine-grain sharing (TOPTOP and VERIFY).

The revised write run metrics also support the coherency block model's relative protocol

performance predictions. As mentioned above, CELL and SPICE have fewer coherency-related

cycles with Berkeley Ownership than Firefly. This is reinforced by their longer average write

run lengths (4.90 for CELL and 6.42 for SPICE. as opposed to 1.20 for TOPOPT and 2.20 for

VERIFY) and a broader write run length distribution (see Table 4-14). The majority of write

runs still tenninate with zero or one external rereads (see Table 4-15). The exact figures are

76.1 percent for CELL, 92.6 percent for SPICE, 89.7 percent for TOPOPT and 67.3 percent for

VERIFY. Like the original architecture-independent write run model, these figures are low

enough that the write run length, rather than the number of external rereads, detennines the

model's relative protocol predictions.

The new sharing ratios for TOPOPT and VERIFY are extremely high (28.5 and 21.5,

respectively), indicating considerable contention for the write shared data (see Table 4-16).

Since write-broadcast protocols perfonn well during periods of contention, it is not surprising

that both the coherency block model and the realistic simulations indicate that the Firefly is the

better protocol for these traces. For three of the traces, the number of busywaiters is identical to

the architecture-independent results. The lone exception is CELL, whose figures differ, but

only slightly. (The percentage of locks that were unlocked with no other processor waiting

dropped from 86.6 to 85.8 percent.) The similarity in lock activity between the two models

demonstrates that locks have not been allocated to the sarne coherency block. Tne very sequen­

tial sharing for locks implies that the contention exhibited by the high sharing ratio for

TOPOPT and VERIFY pertains only to the applications shared data. (In fact, recall that

99

Coherencv Block Write Run Len!!th Histogram

Traces

Run CELL SPICE TOPOfYf VERIFY

Length % % % % % % % %

Bins Write Writes Write Writes Write Writes Write Writes

Runs Runs Runs Runs

1 28.0 5.1 l1.8 1.5 91.5 74.0 79.3 34.7

2 25.8 9.3 31.5 8.0 6.8 11.1 14.4 12.6

3 10.3 5.6 0.8 0.3 1.1 2.6 2.4 3.2

4 19.3 13.9 14.5 7.3 0.2 0.7 1.0 1.8

5 2.2 2.0 1.2 0.8 0.0 C.2 0.7 1.6

6 3.0 3.3 7.1 5.4 0.0 0.1 0.6 1.7

7 1.2 1.6 0.0 0.0 0.0 0.2 0.2 0.5

8 2.9 4.2 17.8 18.1 0.0 0.0 0.1 0.5

9 0.7 1.1 0.0 0.0 0.0 0.2 0.1 0.2

10 0.7 1.3 0.1 0.2 0.0 0.0 0.1 0.5

11 0.2 0.4 0.0 0.0 0.0 0.1 0.0 0.0

12 0.9 2.0 2.2 3.4 0.0 0.0 0.2 1.2

13 0.1 0.3 0.0 0.0 0.0 0.1 0.1 0.3

14 0.3 0.9 0.8 1.5 0.0 0.0 0.0 0.2

15 0.1 0.3 0.0 0.0 0.0 0.3 0.0 0.2

16 0.3 0.8 4.3 8.7 0.0 0.0 0.0 0.2

17 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

18 0.2 0.7 0.6 1.3 0.0 0.0 0.0 0.1

19 0.1 0.2 0.0 0.0 0.0 0.2 0.0 0.1

20 0.4 1.4 0.3 0.8 0.0 0.0 0.0 0.3

>20 3.1 33.8 6.9 24.2 0.2 7.5 0.4 35.9

Total
Write 10091 4493 7957 16912
Runs
Avg.
Write 4.90 6.42 1.20 2.20
Run
Length
Total 55969 35403 9837 38724
Writes

Table 4-14: Length of the Coherency Block Write Runs·

This histogram depicts the percentage of write runs that have a particular write run length for the

coherency block model, assuming a 32 byte coherency olock. Unlike the architecture-independent

ll:odel, the programs with sequential sharing (CELL and SPICE) have longer average write run lengths,

and their distribution of write run lengths is spread more evenly. The histogram also contains the percen­

tage of total writes that are in a write run of a given length. The percentages support the average write

run length data.

100

Coherencv Block External Rereads Histogram
Traces

External Rereads Bins CELL SPICE TOPOPT VERIFY
% % % %

0 19.3 8.0 81.2 7.8

1 56.8 84.6 8.5 59.5

2 12.8 2.6 2.7 16.2

3 4.3 2.3 1.2 8.0

4 2.0 2.5 0.6 4.2

5 1.3 0.0 1.1 2.3

6 1.3 0.0 0.6 1.0

7 0.8 0.0 1.2 0.5

8 0.8 0.0 0.1 0.3

9 0.4 0.0 0.1 0.2

10 0.2 0.0 2.7 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0

Total External Rereads 9194 I 3524 7841 16515

A vg. External Rereads 1.35 1.07 0.66 1.58

Table 4-15: Number of External Rereads Following a Write Run

(Coherency Block Model)

This histogram depicts the percentage of write runs that were followed by a particular number of external

rereads. Like the architecture-independent write run model, the average number of external reads is low

and a single or no external rereads terminates most of the write runs in all traces. Again, this means that

there was little or no contention for the shared variables, and, in isolation, argues for a write-invalidate

coherency protocol.

Sharin!! Ratio

Trace Value Time Period
(mem refs in OOO's)

CELL 7.4 3,732
SPICE 4.6 1,538

I TOPOPT 28.5 3,300
II VERIFY 21.5 3.604

Table 4-16: Sharing Ratio (Coherency Block Model)

Contention for the write shared addresses in the TOPOPT and VERIFY is fairly high. This is in sharp

contrast to the almost lack of contention predicted by the architecture-independent model (1.8 and 1.9,

respectively). Again, the time period is measured by the total number of references processed by each

processor.

TOPOPT uses no locks.)

101

4.9. Refining the Model

Although the coherency block write run model greatly improved the accuracy of the

coherency overhead cycle predictions, they are not yet acceptably close to actual values. Addi-

tional improvements can be realized by further refining the model. The changes involve a more

detailed cost analysis for the transition to the Different Write Run state and dropping the infinite

cache assumption.

Recall that total coherency overhead for both write run models was calculated by multi-

plying the number of state transitions by protocol-specific arc costs. The state transitions sig-

nify only that a change of write run state took place, without stipulating the type of bus opera-

tion that implemented them. The arc costs assume the bus operation that occurs in the most

common case. For write-invalidate protocols, this is an invalidation signal to the Different

Write Run state, a data transfer to the End of Write Run state and no bus operation to the Same

Write Run state. In realistic simulations, these bus operations do not always take place, both

because of algorithmic program behavior and the constraints of a finite cache.

The stipulation that an invalidation signal be the cost of a transition to the Different Write

Run state is based on the assumption that write references result in cache hits. When the writes

produce cache misses, the actual cost is that of the more expensive data transfer. Under write-

invalidate protocols, write misses to shared data have several causes. First, the algorithm of the

program may dictate that the program's first access to the data is a write, rather than a read. 11

Second, invalidations issued by other processors will nullify cache blocks: And finally, blocks

11 Even if the program's first access to the data is a read, the operating system's handling of page faults could

cause the first cache access to a shared address to be a write. For example, when the virtual space for the program is

first allocated, the kernel could zero-fill the heap pages in user space. These writes would generate data transfers

rather than invalidation signals. If an address was still in the cache when the program referenced it, its cache block

would already be private, and the program's reads and writes would cause no additional bus operations.

Other scenarios can be constructed in which different coherency operations are generated. In Sprite [Oust88],

the (virtual) pages are zero-filled in kernel space, flushed from the cache, and then mapped to user space. In this case

a program's first read to shared data will miss in the cache, and the subsequent write will produce an invalidation sig-

nal.

102

may be evicted through block replacements. Although the caches used in the realistic simula­

tions are moderately large relative to the size of the working set of the programs, block replace­

ments do have a small effect on coherency overhead. Block replacements also cause additional

cycles to be charged for transitions to the Same Write Run state. Here either an invalidation

signal or a data transfer replaces the assumed no bus operation.

Table 4-13 illustrates the progression of coherency-related bus cycles, as the coherency

block model is altered to account for the above factors. In all cases the models' coherency

overhead cycles were compared to those in the realistic simulations. The first two columns

indicate the percentage differences for the architecture-independent and coherency block

models. Both model figures reflect coherency cycles, based solely on the number of transitions

and the general arc cost assumptions. The column "Algorithmic Use Variation" uses a weighted

average between invalidation signals and data transfers for the cost to the Different Write Run

state. For the latter operation write runs began with write misses, caused either by a program's

first access to shared data being a write or invalidations by other processors. The fourth

column, "Finite Cache Variation", includes the effects of block replacements in the 128K byte

cache. For this model, additional cycles are charged for data transfers on transitions to the Dif­

ferent Write Run state and both data transfers and invalidation signals for transitions to the

Same Write Run state.

Because the coherency block model abstracts out the differences in the costs of several

transitions, it tends to give optimistic predictions of actual protocol behavior~ For the same

write run transition frequencies, total coherency overhead, measured by the type of bus opera­

tion that actually occurred (in the realistic simulations), is higher. Therefore, as the variations

are progressively included in the model, the percentage difference between the actual coherency

cost and the model predictions should become increasingly less. This is the case for the traces

with sequential sharing, CELL and SPICE. In reality, coherency overhead figures are perturbed

by additional factors not represented by the detailed cost analysis of the state transitions. One

103

example is the bus arbitration protocol. All write run model variations assume a round robin

protocol that ensures equal access to the bus for all processors. On the other hand, the NuB us

protocol used in the realistic simulations guarantees fair access within a wave of requests, but

gives higher wave entrance priority to certain processors at high bus utilization levels. In par­

ticular, the CPUs with the lowest two identification numbers will each be shut out of approxi­

mately half of the waves [Vem88]. Biasing the order of processor bus procurement in this way

changes the global sequence of shared references. The consequence of the unfairness could be

that processors with greater access to the bus will be able to process all references, including

those to shared data, at a faster rate than those processors with a lower priority to the bus. They

will therefore be able to complete more accesses to shared data between intervening references

by other processors. Consequently, they will tend to have fewer write runs with longer average

write run lengths. Both factors will tend to decrease the total number of coherency overhead

cycles for write-invalidate protocols, perhaps even below the models' predictions.

This very likely explains the results for VERIFY, where the coherency block model

predicted more overhead than was reported in the realistic simulations. Once the lower model

base was established, the model improvements from the detailed state transition analysis and

the finite cache widened the gap. In VERIFY's realistic simulation, bus utilization was 96.6

percent; therefore the biased bus arbitration described above would apply. Write run metrics for

the traces also support this analysis; on average there were fewer write runs in the realistic

simulations tha..'1 for the coherency block model, and the average write run length was longer.

TOPOIT also had fewer and longer write runs in the actual simulations. However the

actual coherency overhead cycles were not close enough to those in the models to cause the

latter to dominate, until the model that incorporated a detailed breakdown of the tr:msitions that

began write runs (the algorithmic use variation). Here the large drop in the comparison figures

between the coherency block and algorithmic use variation (16.51 to -1.17 percent) is attribut­

able to the large proportion of write runs that began with a write (84 percent). In the

104

algorithmic use variation these transitions incurred the cost of a full data transfer.

4.10. Chapter Summary

The results in this chapter have demonstrated the limitations of simple, architecture­

independent sharing models in accurately predicting coherency overhead for write-invalidate

protocols. Actual performance for these protocols depends on several architecture- and

program-dependent factors, the most important of which is the coherency block. When the

coherency block is larger than the one-word unit of access in the architecture-independent

model, the memory access pattern to the shared data within the block dominates the effects of

the sharing pattern intrinsic to the algorithm of the program. A savings in coherency overhead

occurs when the memory access pattern is one of sequential sharing; and additional coherency

cycles result with fine-grain sharing.

When the size of the coherency block is incorporated into the write run model, model

predictions reduce the relative error (between the model and realistic simulations) by a factor of

4.8 to 52.7, depending on the trace. Model predictions come within an average of 9 percent of

actual simulations. The coherency unit model is more accurate, because it includes two factors

that are crucial to modeling parallel program activity. First, it reflects locality of reference to

shared data in the workload through the write run characterization. Second, it bases the locality

analysis on the size of the coherency unit. Incorporating the coherency unit into the model

places a limit on the per-processor locality. The limit reflects the inter-processor activity for

shared data that occurs in a running multiprocessor.

Integrating all factors (the coherency block, a detailed analysis of the state transitions that

begin a write run and a finite cache) produced model predictions that were close to realistic

simulations. The final discrepancies ranged from 2.3 to 4.5 percent. The cost of incorporating

the factors is the necessity to redo the modeling simulations should any of the factor values

change.

105

The original, architecture-independent model is still useful for several reasons. First, it

provides accurate predictions for write-broadcast protocols. This is primarily because the size

of their coherency block matches the unit of analysis in the model and all coherency-related bus

operations have the same cost. In addition, cache misses have no effect on coherency overhead

for write-broadcast, because updates to shared data are only broadcast on cache hits. When a

block is replaced or a write run begins with a write, the block is read into the cache before the

broadcast is issued. The same amount of coherency overhead is incurred, if the block had not

been replaced or if the write run had begun with a read. The infinite cache in the architecture­

independent model perturbs coherency overhead for write-broadcast slightly, in that it guaran­

tees that once data is shared, it remains shared. In the realistic simulations shared data is occa­

sionally replaced, and not referenced. The shared bus line is eventually dropped, and write

broadcasts are discontinued. Infinite cache effects would have been much more pronounced had

the cache in the realistic simulations been smaller.

Secondly, by concentrating totally on write run activities, the architecture-independent

write run model highlights the differences between the two types of protocols and explains how

different patterns of sharir1g affect relative protocol performance. Third, the architecture­

independent model was used to isolate the factors that turned out to be important in modeling

write-invalidate coherency costs, previously mentioned. And lastly, it requires only one simula­

tion per trace, for all cache architecture parameters.

106

4.11. References

[Agar88] A. Agarwal and A. Gupta, "Memory-Reference Characteristics of Multiprocessor

Applications under MACH", Proceedings of the 1988 ACM Sigmetrics

Conference on Measurement and Modeling of Computer Systems, 16, 1 (1988),

215-225.

[Dare87] F. Darcma-Rogers, G. F. Pfister and K. So, ''Memory Access Patterns of Parallel

Scientific Programs", Proceedings of ACM SIGMETRICS, 15, 1 (May 1987), 46-

58.

[Hi1186] M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A.

Gibson, P.M. Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S.

A. Ritchie, D. A. Wood, B. G. Zorn, P. N. Hilfinger, D. Hodges, R. H. Katz, J.

Ousterhout and D. A. Patterson, "SPUR: A VLSI Multiprocessor Workstation",

IEEE Computer, 19, 11 (November 1986), 8-22.

[Katz85] R. Katz, S. Eggers, D. Wood, C. L. Perkins and R. Sheldon, "Implementing a

Cache Consistency Protocol", Proceedings of the 12th Annual International

Symposium on Computer Architecture, 13, 3 (June 1985), 276-283.

[Oust88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson and B. B. Welch,

"The Sprite Network Operating System", IEEE Computer, 21, 2 (February

1988), 23-36.

[Smit85] A. J. Smith, "Cache Evaluation and the Impact of Workload Choice",

Proceedings of the 12th Annual International Symposium on Computer

Architecture, 13,3 (June 1985), 64-73.

[Thac88] C. P. Thacker, L. C. Stewart and E. H. Satterthwaite, Jr., "Firefly: A

Multiprocessor Workstation", IEEE Transactions on Computers, 37, 8 (August

1988), 909-920.

[Vern88] M. K. Vernon and S. T. Leutenegger, "E.imess Analysis of Multiprocessor Bus

Arbitration Protocols'', Technical Report #744, Computer Sciences Department,

Univ. of Wisconsin-Madison (September 1988).

5.1. Introduction

The Effect of Sharing

on the Cache and Bus Performance

of Parallel Programs

The cache behavior of uniprocessor programs, in particular, the effect on performance of

changing cache parameters, has been extensively analyzed (e.g.,

[Agar88, Alex86, Good87, Hill87, Przy88, Smit85, Smit87]). For small and medium sized

caches, increasing the cache size causes a drop in the miss ratio that is substantial enough to

reduce the effective memory access time, despite the additional cache access time of the larger

caches. For very large caches, the miss ratio still falls; however, its value is quite low. The

resulting high hit ratio, multiplied by the longer cache access time, causes the effective access

time to :ise. The miss ratio trend for increasing block size is not as consistent. A larger block

size llso reduces miss ratios, but only up to a cenain size. After reaching this memory pollution

point, miss !'atios begin to climb. But even the declining miss ratio does not always increase

performance, because of the additional bus traffic latency caused by the larger transfer block.

Miss ratios and bus utilization of parallel programs should be higher than those of Wlipro-

cessor programs, because additional bus traffic is required to maintain coherent caches. This is

108

a critical performance issue in single-bus multiprocessor design, since bus bandwidth is the lim­

iting performance factor in such a system. If the cache and bus behavior of parallel programs,

varying across cache and block sizes, is radically different from uniprocessor programs, then

new rules of thumb are needed to design memory systems for multiprocessors.

The goal of this chapter is twofold: first, to analyze the cache and bus behavior of parallel

programs running under write-invalidate coherency protocols; and second, to compare this

behavior to that of their uniprocessor counterparts. The research shows that parallel programs

do have different cache and bus behavior than uniprocessor programs; and that it is the refer­

ences to shared data that are responsible for the difference. The results are most dramatic when

increasing block size. Here the proportion of sharing-related misses to total misses rises. The

consequence is a higher miss ratio than for uniprocessor programs. For some traces the effect

was great enough to cause miss ratios to rise with incr.:asing block size, rather than fall. Shar­

ing also worsens the miss ratios when increasing cache size; again, the effect is more pro­

nounced with larger cache sizes. For most programs sharing-related bus traffic dominates bus

utilization cycles with large caches (128K byteS and up) and all block sizes studied (4 to 32

bytes). At these cache configurations it is the sharing traffic that creates the multiprocessor bus

bottleneck.

These results indicate that larger caches and block sizes, the traditional techniques for

improving cache performance, are less effective with parallel programs than uniprocessor pro­

grams. However, additional performance improvements can still occur using .software tech­

niques. For the programs analyzed, the amount of sharing overhead depended on the intra­

block memory reference pattern for shared data. Programs that exhibited sequential sharing

performed better than those with fine-grain sharing. If programmers (or compilers) are aware of

memory reference patterns when writing (generating) parallel code, they can anain better pro­

gram performance by altering the memory organization of the shared data.

109

The remaffider of the chapter contains the studies of the cache (section 5.2) and bus (sec-

tion 5.3) behavior of parallel programs, each investigating the effects of changing both block

and cache size. Section 5.4 summarizes the results; the summary discusses the implications of

cache and bus performance of the parallel programs, both for multiprocessor cache design and

software design.

5.2. The Effect of Sharing on Miss Ratios

5.2.1. Varying Block Size

Cache miss ratio studies of uniprocessor programs have indicated that for a fixed size

cache, the miss ratio initially drops as the block size of the cache increases

[Agar88, Alex86, Good87, Hill87, Przy88, Smit87]. The decline is due to improved cache hits

because of locality of reference. However, as block size continues to increase, the decrease in

the miss ratio tapers off. For small and medium sized caches, those in the range of 4K bytes to

16K bytes, the miss ratio decline may terminate at some particular block size (in [Good87], it is

32 bytes and 128 bytes, respectively), after which the miss ratio begins to rise. The termination

is known as the memory pollution point. 1 As cache size grows, the pollution point shifts to an

increasingly larger block size. For 128K byte caches, [Agar88] reports that the pollution point

is not reached with block sizes up to 32 bytes (the configurations in this study). Therefore, for

uniprocessor programs, miss ratios should continue to decline until that point.

Analysis of the parallel traces indicates that their miss ratios do not always follow the

trend of uniprocessor programs (see Figure 5-l). CELL and SPICE consistently exhibit the

expected decline; but the miss ratios for TOPOPT and VERIFY actually increase. Their rise is

1 For a fixed sized cache, a larger block size results in fewer cache lines. The pollution point OC"'UIS beca!lSe

memory references take place to noncontiguous data that do not reside in the cache, while contiguous, but l.mfefer­

enced, data remain in the larger block. Until the pollution point is reached, the larger block size implicitly prefetches

data that will be referenced in the near future.

3.0 .. _
w ' • .
?. : : :

2.5

l\ : : :
' \ : : :

----------+--';·-----~-----------i-----------1

M
i
s 2.0

s

___________ j _____ _j_ ________ _j_ __________ j
.... \ : : :
: \i : :
: ' I<_ : :

R
1.5

a
t 1.0
i
0

---------··t=··------~·~\~.---f·--------::;VERJFY
: : ,., :

....................... ~ ~-----------·-:~-.::..-··-~
: : : OCELL

: : : ·;sPICE

0.5:;. ; ~

~OPOPT

0.0
. ' ' .
4 16 32

Block Size (bytes)

Figure 5-l: Miss Ratio

Parallel traces exhibit two miss ratio trends as

block size increases. Miss ratios decline for pro­

grams with sequential sharing (CELL and SPICE);

however, for programs with fine-grain sharing

(TOPOPT and VERIFY), they are dominated by

the misses caused by intra-block contention for

shared data, which produce the rising curves. (All

block size graphs are for a 128K byte cache.)

110

18 -------- ----r-- ----------r ------------:----------- -i
16 -------- ___ i ___________ [_ ----- ______ [____ ------ __ j

M 14 -----------t\-------; ____________ ; ____________ l
i : \ : : :
s 12 -----------+------\,--i------------r------------1
s 10 ------------k--------->L----------L---------..1

~VERIFY
R
a
t
1

0

..................... : "f....._: :
I ' '- '

6 -·· ------ ---~------- -----~- =:: .. --=. .. ::::.-..~-·--I
. ! ! - - ':.:iSPICE
, : : ·CELL

4 ------------r-----·-----·r··----------r··--------·-~

2 ------------~OPOPT

0 ' ' ' ..;

4 16 32

Block Size (bytes)

Figure 5-2: Shared Miss Ratio

The shared miss ratios (misses to shared data di­

vided by total references to shared data) follow

the trend of the total miss ratios, but have a value

that is 5 to 7 times higher. The higher figures

reflect the poorer locality of shared data.

slight, and, for one of the traces, not continuous across all block sizes. However, their behavior

was completely unexpected, given the uniprocessor literature. Miss ratios for the shared refer-

ences only,2 depicted in Figure 5-2, indicate almost identical behavior, but at higher values.

Due to the poorer locality of reference for shared data, miss ratios for shared data were 5 to 7

times greater than total miss ratios, depending on the particular trace and block size.

Eliminating invalidation misses from the miss ratio calculations3 leaves a uniprocessor

component that approximates uniprocessor miss ratios. The uniprocessor miss ratio component

2 The shared miss ratio is the number of misses to shared riata divided by total references to shared data.

3 The new calculation is: total misses - invalidation misses
total refs

111

for all traces corroborated results from previous cache studies of uniprocessor programs. In

other words, the uniprocessor miss ratio component declined as block size increased, and the

marginal rates of decline also decreased with block size (see Figure 5-3). The values were less

than the multiprogramming miss ratios reported in [Agar88]; however, this is to be expected,

since these traces contain applications references only, and the traces in [Agar88] include

operating systems references. The uniprocessor miss ratio components for SPICE are most typ-

ical of the results of the composite uniprocessor applications workload reported in [Good87].

The predictable trend of the uniprocessor component of the miss ratios suggests that it is

the invalidation misses that are responsible for the variable miss ratio behavior of the parallel

3.0 ·-------·-·r··-------··:·----------~-----------1

2.5 -----------~-~---------:----------·j·····-····-i

M i \ i i i
1 2.0 -----------i----~------~-----------i-----------~ s : \ : : :

! \ i ! i s
R 1.5 ····-------L :l.l L J

: f·,, ! '
a
t
1

0

I 0 ' I

1.0 -----------~------~--.... 'i:·· '-: --l--------····i
: l :
! ;_ ·......... , VERIFY

.... -···---~-------···-.l. ; .. ::..::.:::iS PICE

O.S l l j jCELL

0.0
4 16

Block Size (bytes)

OPOJ!f
32

Figure 5-3: Uniprocessor Component
of the Miss Ratio

The uniprocessor component of the miss ratio for

parallel programs mimics the declining miss ratio

behavior of uniprocessor programs. This suggests

that the variability of the miss ratio curves for

parallel programs is caused by the invalidation

misses.

1.0 -----------·r·-------··r··-------T··---------: OPOJ!f

0.9 ----------·-·t·--------1------------~--- '
0.8 -------·····r··-------·-r··-- ----·r··---------;
0. 7 6- ---------·-r --·-------- ·r--- ... -----·--r--------- ----;
o.6 ------·······[······· ····t··········--t·····----·--i
0.5 --------·····[··· -----·-t·····--·····t··----------~

! ! ! :VERIFY
0.4 ····-·-····· , ·······-···-~·-:··,::-·::··f'·:.:.--=:·· !CELL

-----t : :

::: ::::::::::::I~~~~:_:::;::~;~:=i~~~~-:~~1sflCE
o. 1 ------------+-- ------r·---------1·-----------1
0.0..,_ __ ,.._ __ ..,_ __ __ -i

4 16 32

Block Size (bytes)

Figure 5-4: Ratio of Invalidation Misses
to Total Misses

The ratio of invalidation mlsses to total misses in­

creases as block sizes increase. At larger block

sizes the invalidation misses of three of the traces

comprise a substantial portion of the total; and for

TOPOPT they dominate miss ratio behavior. (The

numbers are the geometric mean of the ratio of in­

validation to total misses, across all processors.)

112

programs. A more detailed examination reveals that two interacting factors determine the miss

ratio trends (see Figure 5-4). First, as block size increases, invalidation misses become a larger

fraction of total misses. Therefore they become an increasingly significant determinant of miss

ratio behavior. The second factor is the high value of this fraction at the larger block sizes. At

small block sizes, the uniprocessor misses dominate. However, at larger block sizes the number

of invalidation misses is either a substantial (CELL, VERIFY and SPICE) or overwhelming

(TOPOPT) proportion of the total. The combination of these factors forces the miss ratios to

follow the trend of the invalidation misses as block size increases. For many block sizes the

invalidation misses are the single most determining factor in miss ratio behavior.

The traces exhibited two distinct invalidation miss trends.4 For programs whose memory

reference pattern for shared data is dominated by sequential sharing, such as CELL and SPICE,

the number of invalidation misses declines as block size is increased (see Figures 5-5 and 5-6).

Shared data in these traces have good spatial locality of reference. Each processor tended to

read several contiguous words in succession, all of which had been previously invalidated.

With the 32 byte block size, the invalidation miss penalty was incurred only for the first of eight

words; with smaller blocks, for example, 4 bytes, it was incurred for each. Because the invali-

dation miss trend reinforced that of the uniprocessor miss ratios, the miss ratios declined.

SPICE, in particular, had good locality of reference. Its shared data structures had been sized to

the ELXSI 6400 64 byte cache block. explicitly to avoid fine-grain sharing for addresses within

the block. Therefore for block sizes considered in this study (up to 32 bytes), little contention

was observed.

For programs with fine-grain sharing within a block, such as TOPOPT and VERIFY (see

Figures 5-7 and 5-8), the declining uniprocessor miss ratio was offset by the increase in the

number of invalidation misses and their large proportion within total misses. Invalidation

4 The write run results in [Egge88] and Chapter 4, and tracking cache block behavior with the simulator corro­

borate the difference in behavior between the two groups of traces.

80000 ---------r··----··r···--·-·r···-----!
70000 ······-···! ·········i·-········t··········i
60000 ---------+----- --1----------+----------!

I I I I M . I ' I

50000 ----------~---------1··· ----+-······-·!
1
s
s
e
s

: ''.. : j :
0 ' I 0 I

40000 ······-···j··----:...~-i---------· : ·········:
3oooo ····-·····1··----·-·t:::~,:;~=~·--··i TOfAL

... - I I , I

20000 ···--·---·1·------·'t·::·-:_:-·t······-·;UNIPROCESSOR

: : ~-- : N
1 OOOO ··-·-····-:-·-··-····:·-··-------:·····----1INV AUDA 110.

0+---~----~--~--~
4 16 32

Block Size (bytes)

Figure 5-5: Oassification of Misses
for CELL

113

60000 -------·-r··-----T·------T·--------l

M : ---~---f,:,_-=r:.:-r::-:.:-~
1
s
s
e
s

: \ : : :

30000 ······-···j··---~\.~------··-t-··-···---1
2000() ••••••••••i••••···-··i·:~r,:, ··:···•······!

: : -~ :
; i : ·-... 'TOTAL

10000 --·-·--·-·j··-····---j--··-·····t··-·-:-'-..·+UNIPROCESSOR .. - . . .
! t-- t-- ~INVAUDATION

0
4 16 32

Block Size (bytes)

Figure 5-6: Classification of Misses
for SPICE

The memory reference pattern of shared data in both CELL and SPICE is one of sequential sharing.

Therefore invalidation and uniprocessor misses both decline, producing miss ratio curves that are similar

to uniprocessor programs.

misses had the largest effect on TOPOPT, and for two reasons; first, the trace had the most

fine-grain sharing, and second, it had a low uniprocessor miss ratio, because its working set fit

into the 128K byte cache.

A short note should be made about the miss ratio behavior of the components of shared

data, i.e., locks and the shared applications data they protect. For the traces with sequential

sharing, the applications data were responsible for the high shared miss ratios depicted in Fi£Ure

5-2. Miss ratios for the locks were 2.0 to 4.9 times lower for CELL and 2.4 to 15.8 times lower

for SPICE, as block size increased. This corroborates the results in Chapter 4, sections 4.5 and

4.8, that indicate that there was little contention for locks. Greater lock contention would have

resulted in more invalidations to them and consequently additional rereads and a higher lock

miss ratio. In addition, the lock miss ratio was impervious to increases in block size, indicating

that the good locality of reference to shared data in CELL and SPICE was due to the

114

applications shared data, rather than the locks. The lock miss ratio for VERIFY was more sen-

sative to changes in block size, rising rapidly as block size increased. At 4 bytes it was one-

ninth the miss ratio of the applications shared data; at 32 bytes both were comparable.

5.2.2. Varying Cache Size

The benefits of increasing cache size on miss ratios of uniprocessor programs are well

known. Numerous trace-driven studies over a variety of workloads have all confirmed that the

miss ratio drops as cache size is increased, but that the improvements diminish for large caches

[Agar88, Alex86, Good87, Hill87, Przy88, Smit87].

14000 ·········r·······T·······T·····-···:
12000 ·····----L-.L--l----- 'TOTAL

i i i ;~AUDATION

1<Xm ···-----i--------t------ : -:;.l-~---1
M : : it :

i : /; i
i
s
s
e
s

8000 ····-····•······- ····-r·+··---:
: : / : :
! ~ I' ! i

6000 •••••••••• j.. ···--1--------+--------i
i I i i i
, I i i i

4(X)();. ~---·.;. _ ~-----:
: I : : : ... : : : : ,_ .. __ : : :

2000 ······--r-····-·:-..::;:::::t:=~·-···1
j j j -·1UNIPROCESSOR

0
4 a 16 32

Block Size (bytes)

Figure 5-7: Oassification ofMisses
forTOPOPT

TOPOPT is the trace in which the invalic!ation

misses had the most effect and for two reasons:

first, it exhibited the most intra-block fine-grain

sharing; and, second, its uniprocessor miss ratios

were low, because the working set fit into the

128K byte cache.

soooo ··········;··········r·········r··········l

~TOTAL

4<Xm ·········t:~.----r·········t··········i
I ' I I I

M l ·,·~. l l
. 30000 -·---·---{--------+-~: ... ~'"+-·--------~
1 ' ' '
S j j i • , ~OCESSOR
s l l l

e 20000 ······---i---······-~-----···-+----7.!.' .. :
S 1 1 i ; ~AUDATION

: : ... t :
: : "' : :

l<Xm ··········l·········-~--r:······+···-·····i : ... r : :
: , : : :
' , . . .
~ l i l

0~---P--~~--~--~
4 8 16 32

Block Size (bytes)

Figure 5-8: Oassification of Misses
for VERIFY

Although VERIFY's memory reference pattern

was one of fine-grain sharing, the uniprocessor

misses were proportionately high, particularly at

small block sizes. Therefore the miss ratio at first

declined, then rose. (Since the individual proces­

sor figures for VERIFY were widely skewed, the

ratios of invalidation misses to total misses do not

match the geometric means in Figure 5-4.)

115

Shared programs do not experience the same miss ratio benefits of increasing cache size.

While it is true that their uniprocessor-related misses decline with larger caches, their invalida-

tion misses either rise or, at best. remain constant. The combination produces a miss ratio that

declines with cache size, but is higher than for comparable uniprocessor programs.

The parallel traces support this analysis. For all traces, miss ratios decline with increasing

cache size (see Figure 5-9), and total miss ratios are higher than their uniprocessor components

(see Table 5-1). The discrepancy increases with cache size, because the uniprocessor miss ratio

declines more steeply. The exact figures range from 1.02 to 2.2 higher for SPICE, 1.1 to 2.5

higher for VERIFY, 1.1 to 4.7 higher for CELL and 1.7 to 15.4 higher for TOPOPT, as cache

6 ·---·-·r·-----·I··-··--r------~----·-1----···1

s ···----~ - !--··---f--------t-·-----t---1
M ~- \
i i \ i i i i i
s 4 ----;--.. ~~:)··--·--t----,----·-t-··1
s : ~-, ! ! ! !

R
3 _______ ..,.. .. --·~--"'1;-:------. ---:-----:

:' : ·,: : : :
a ! ' ! ·-t ! ! !

t 2 -----~----~~- ----F\.----i·----~-------i
i : : ' . \ : : :
0 i l 'i \. ! !

.................. l - : -,..__~~ ,:. - ~

0

N ~ r-~--1=-=-~~
: : : : : :TOPOPT

16 32 64 121 256 512

Cache Size (Kbytes)

Figure 5-9: Miss Ratio

Increasing the cache size causes the miss ratio for

parallel programs to decline. However, the miss

ratio is higher than for uniprocessor programs, be­

cause of invalidation misses. (All cache size

graphs assume a 32 byte block.)

7AOOl -----~-----T----y-----r-··T-----1

21000 -----+ ---+----+----f------i------j
: ! : ; ! :

11000 -----~---- -r····-t----t-·~------1

lf 15000 ----··t·--- --···:······~--····t"""l
'· ! ! ' ' 'TOTAL

~ 12000 ----··n·~-:f-=-f'==- r-~--r·:.:· TINY AliDA noN

e
s

*".
9000 ··---;-\·+·--t····+----+·--··1

: \ : : : : :
6000 -··-t---\~t·--+---+··--+··-·i

! ~ : ! ! !
3000 ---··t--··--r··,.i::::·i·----·1-------~

0
! ! ! '+-·-+-·-·-+UNIPROCESSOR

16 32 64 121 2S6 512

Cache Size (Kbytes)

Figure 5-10: Oassification of Misses
forTOPOPT

Of all the traces TOPOPT has the most fine-grain

sharing within the cache block. The effects of that

intra-block contention are manifested by the dis­

tortion to the miss ratio caused by the number of

invalidation misses. (Note that the scale of the y­

axis is roughly one-sixth that of VERIFY in Fig­

'JI'e 5-11.)

116

size increases from 16K bytes to 512K bytes. (See comparative curves for different types of

misses for two of the traces, TOPOPI' and VERIFY, in Figures 5-10 and 5-11, respectively.)

These results indicate that the benefits of increasing cache size are less pronounced for parallel

programs than uniprocessor programs.

The reason is the presence of invalidation misses. The number of invalidation misses is

inversely related to the number of block replacements, i.e., they increase as block replacements

fall. At small cache sizes, the number of block replacements is relativeiy high. If it is assumed

M
i
s
s
e
s

~~ ----T--··r······r-·T--·r·---~
12()(]()() , -----~-----~----·~·-----.._ ;

~. : : : : :
I I I I 0

I I t I I

:\ : : : : :
100000 ---h- ·+·-t···-~---+-·-1

I 0 I I I I I

: \ : : : : :
: \ : : : : :

10000 ··--t-1· ~--·-t·-·-t-····t-··:
1 \: 1 1 1 1
I \' t I I I

60000 ·---~-·-t' .. -~-----~-----~-----!
o o I I 0

I I I I

! i\ . : ! i
' o o I I 0

~ ··-1···-·i--\...i--·····t-- · :TOTAL
: : '.: : . .
: : ... : : :

2()(]()() ----i-----~---.__._;i>.~--~-=-~ ALIDA TION r -~ 1 1 ·-r--·1UNIPRoas50R
0

16 32 64 128 2S6 512

Cache Size (Kbytes)

Figure 5-11: Classification of Misses
for VERIFY

Miss trends for VERIFY typify the effect of shar­

ing with increasing cache size. The presence of

invalidation misses causes the total number of

misses (ancl hence the miss ratio) to be higher tha.'l

for a uniprocessor program. Their rise, as cache

size increases, widens the gap between the total

and uniprocessor miss ratio. CElL and SPICE

have similar curves, although fewer misses in ab­

solute and fewer invalidation misses propor­

tionately. Their Iowa figures are due to sequen­

tial sharing.

1.0 ---····:·····-1-·-····:·······:·······r·····-·:
: : : OPOPT

o.9 ·-·····-t······t····-·t··-- r·····-r···-··1

:: -=~t~:=E=t~;r
i i i /,....--~SPICE

o.s ·--- --r-··-T-·--r-Tlf-···-·· ... ·;VER.IF
0.4 ·····-·: ·t··---·+····· ' -~,.:·-·i···-···j

: : / :/ : :
0 3 ········~---····+··-- +·)1'··-·Jf··-·--~---·····l
. 1 1 i /(1 1

:~ :=:~~t~=f~=r=r-=:=:
0.0

16 32 64 128 256 512

Cache Size (Kbytes)

Figure 5-12: Ratio of Invalidation Misses
to Total Misses

The ratio of invalidation misses to total misses in­

creases with increasing cache size. The rise is

much steeper than with increasing block size for

the traces with sequ~ntial sharing, CEll and

SPICE. (The numbers are the geometric mean of

invalidation to total misses, across all processors.

Since the individual processor figures for VERI­

FY were widely skewed, the geometric means do

not match the ratios of the absolute misses in Fig­

ure 5-11.)

117

that shared data are replaced at the same rate as private data or instructions, then a proportion of

shared data blocks, equivalent to the percentage of blocks replaced, will be eliminated from the

cache. They therefore cannot be invalidated and, consequently, will not incur invalidation

misses. s As cache size increases, the percentage of block replacements drops. Shared data tend

to remain in the caches for longer periods of time, have more opportunity to be invalidated, and,

consequently, rereferenced via invalidation misses. The number of invalidation misses should

be higher with each successively larger cache, approximately by the percentage decrease in

block replacements. 6 For very large cache sizes, in which the program's working set fits into the

cache, the incremem.al number of block replacements is negligible, and the invalidations will

tend to level off. Again, the traces confirm the analysis. For all traces, the number of invalida-

tion misses rises with increasing cache size. The increase is most pronounced at smaller cache

sizes, at which the change in block replace·-,ents is also greater (table not shown).

As was true with the block size figures, the proportion of invalidation misses becomes

larger as cache size increases (see Figure 5-12). For the traces with sequential sharing and good

spatial locality (CELL and SPICE), the effect of the invalidation misses is more pronounced

with larger cache sizes than with larger block sizes. Invalidation misses cause the greatest per-

turbation for TOPOPT, the trace with the most fine-grain sharing. Here the proportion of invali-

dation misses to total misses ranges from 42 to 93 percent, as cache size increases from 16K to

512K bytes. This causes the total miss ratio to be 1. 7 to 15.4 times greater than its uniprocessor

component (again, see Figure 5-10).

The working sets of TOPOPT and VERIFY fit into the larger sized caches. Once the

caches were filled, the number of uniprocessor misses remained constant. The invalidation

3 They will. however, like all data and insttuetions, incur replacement or capacity misses [Hil187]. However,

this is a consequence of the smaller cache size., rather than the type of data (shared), and will occur for all data and in­

structions. As caches get larger, some of the capacity misses become invalidation misses. No matter which category

they fall in. i.e., no matter what the cache size., they still contribute 10 the miss ratio.

6 The rising cost of sharing with larger caches is a problem usually associated with write-broadcast coherency

protocols (see Chapter 6); it is interesting that the problem occurs with write-invalidate as well.

118

Percentage Change in Miss Ratio

Trace Miss Ratio Cache Size Spread (in bytes)

Tvoe 16K-32K 32K-64K 64K-128K 128K-256K 256K-512K

CELL Total -35.193 -41.487 -26.267 -25.147 -18.225

Uniproc. -39.832 -50.511 -41.174 -49.245 -54.467

SPICE Total -29.444 -29.770 -68.364 -42.592 -1.324

Uniproc. -31.566 -32.189 -75.871 -61.098 -7.120

TOPOPT Total -35.647 -5.812 -12.197 0.000 0.000

Unioroc. -72.467 -26.663 -70.330 0.000 0.000

VERIFY Total -38.203 -27.167 -11.596 -15.354 0.000

Unioroc. -47.062 -43.031 -25.338 -35.544 0.000

Table 5-l: Percentage Change in Miss Ratio with Increasing Cache Size

This table contains the incremental miss ratio decline as cache size increases. Note that for all programs

and all cache sizes, the uniprocessor miss ratios declined more steeply (bold) than total miss ratios. This

indicates that uniprocessor programs obtain a greater benefit from increasing cache size than do parallel

programs.

misses also remained constant, because there was no more block replac-::ment effect.

5.3. The Effect of Sharing on Bus Utilization

The critical system bottleneck in a single-bus, shared memory multiprocessor is the

bandwidth of the system bus. Relatively few processors can be attached to the bus, unless each-

ing is used to reduce their bandwidth requirements. For a single-bus multiprocessor, the most

important consideration for cache organization is how well it limits bus utilization. As was

implied by the higher miss ratios in the last section, the bandwidth requiremel)ts are greater in

parallel programs than uniprocessor programs because of the sharing traffic. With large caches

and large block sizes, sharing traffic is expected to dominate the bandwidth and, consequently,

dictate the number of processors that can be effectively attached to the bus.

119

5.3.1. Varying Block Size

Several uniprocessor studies [Good87, Przy88, Srnit87] have shown that, up to a certain

size, increasing the block size can improve bus performance. A decreasing miss ratio, as block

size is increased, is responsible for the improvement An increase in the time per miss, that also

accompanies larger block sizes, partially erodes the benefit of the dropping miss ratio. The

breakeven point occurs when the decline in the miss ratio is offset by the increase in the average

number of cycles per transfer. Results in any bus utilization study are highly dependent on the

cycle assumptions for both memory accessing and bus transfer overhead. But, for caches of the

size under study, i.e., 128K bytes, and up to 32 byte blocks, at least one study has shown that

the average memory access time declines with increasing block size [Agar88].

Sharing alters bus utilization in two ways. First, invalidation signals and invalidation

misses are sources of additional bus traffic, since they do not exist in uniprocessor systems.

They cause bus utilization to be higher in parallel programs. Second, the slope of the bus utili-

zation curve is determined by the memory reference pattern to shared data. Programs with

fine-grain sharing have miss ratios that increase rather than decrease with block size. Therefore

their miss ratios compound the increase in bus traffic caused by the larger transfer unit, and bus

utilization increases. For programs that exhibit sequential sharing, miss ratios decline, and the

marginal miss ratios (as block size increases) are comparable to those for uniprocessor pro-

grams. In this case, bus utilization could proceed in either direction, depending on whether the

change in the miss ratio is great enough to offset the increase in the average ~umber of cycles

per transfer.

The traces under study reflected these effects. For all traces, bus utilization was higher

than its uniprocessor component.7 (The ranges for the individual traces are: 1.9 to 2.2 higher for

7 Uniprocessor bus utilization is determined by excluding the cycles used for invalidation signals and invalida­

tion misses.

100 ··········-r··········r·········T·········-~ VERIFY

90 ···········j············:···········j···· ·····i
80 i !------- ··i··-------··i

p 70 ···-·····-·j···-····-·- ; ·-······-·j·········-·i
e
r
c
e
n
t

60 ···-·····-~:--·· ···-+··-······-·!··-······-·1
50 ···-······ : ... :~: ... :+·-····-·-+·-·······-~TOPOPT

~ ~--._ i SPICE
40 ••••••••·•• i ... ::·--r·-··:.i~·- --~CELL

30 ···-·······j············r········· : ············:

20 ···-·······j·········· ! ···········j···········i
10 ···-······· i ·········-r--·········:--·········1
o+---~----~----~--_.

4 16 32

Block Size (bytes)

Figure 5-13: Effect of Block Size
on Bus Utilization

Bus utilization is calculated as the number of cy­

cles during which a bus operation took place, di­

vided by the total cycles in the simulation. The

bus cycles include cycles for the overhead of bus

operations, in addition to those counted in bus

traffic figures. The sequential sharing of CELL

and SPICE produced the declining or flattened bus

utilization curves; the fine-grain sharing of TO­

POPT and VERIFY exacerbated their already ris­

ing average cycles per transfer, resulting in in­

creasing bus utilization. (All block size graphs are

for a 128K byte cache.)

0.9

0.8

0.7

0.0+-----~--......;.-----+-----i

4 16 32

Block Size (bytes)

120

OPOPT

Figure 5-14: Ratio of Sharing Bus Cycles
to Total Bus Cycles

The cycles needed for invalidations and invalida­

tion misses were a substantial portion of or com­

pletely dominated total bus cycles, over most

block sizes. This indicates that efforts to reduce

bus bandwidth demands should concentrate on the

sharing-related traffic.

CELL, 1.7 to 1.8 higher for SPICE, 2.3 to 17.7 higher for TOPOPT and 1.3 to 2.6 higher for

VERIFY.) For the most part, the sequential sharing of CELL and SPICE produc_ed a miss ratio

that decreased enough to offset the increase in the average cycles per transfer. The result was

bus utilization figures that decreased over most of the block size spectrum (see Figure 5-13).

TOPOPT and VERIFY are programs with a fair amount of fine-grain sharing. The resulting

increase in their miss ratios (or a very small decrease for some block sizes for VERIFY), plus

the normal rise in the average number of cycles per transfer, produced increasing bus utilization

121

figures (again, see Figure 5-13). ([Cher88] has also noticed the effect of fine-grain sharing on

bus traffic. In simulations done on a four-processor multiprocessor, in which management of

the 256K byte cache was done under software control, two traces exhibited an increase in bus

operations per reference, as block size was increased.)

For three of the traces sharing-related bus overhead comprised a substantial portion of

total bus cycles across all block sizes but one (4 bytes for VERIFY). For the fourth trace,

TOPOPT, they totally dominated bus activity. The ranges are 56 to 94 percent for TOPOPT, 45

to 61 percent for VERIFY (excluding the exception), 47 to 54 percent for CELL, and 40 to 44

percent for SPICE (see Figure 5-14). (The proportions are higher than the proportions of invali-

dation misses to total misses, because the cycle figures include cycles for invalidation signals as

well as invalidation misses.) The curves clearly show that for 128K byte caches bus bandwidth

requirements are detennined by the sharing traffic.

Because sharing-related bus overhead is such a large proportion of total bus cycles, its

behavior as block size increases can dictate the bus utilization trend. TOPOPT is the most

extreme example. It has the largest proportion of sharing cycles, and their rate of increase is

steep (see Figure 5-15). Although the uniprocessor cycles decline with increasing block size,

their rate of decline is more moderate, and they are a very small proportion of total bus cycles.

Therefore TOPOPT's total bus utilization curve rises. The other three traces exhibit similar

effects, although for the programs with sequential sharing, the sharing cycle trends pull total bus

utilization downwards. (An example appears in Figure 5-16.)

5.3.2. Varying Cache Size

Increasing cache size is an important design technique for improving bus utilization.

With the exception of enlarging either an extremely small block or a very large cache, 8 it pro-

8 Increasing an already large cache is an exception because it provides linle additional benefit; on the other

hand, doubling a very small block, say 4 bytes in size, produces a good performance improvement.

200000 ··········:··········:-·········:··········:

: : : 'TarAL

175000 • ········+···-·····i··········+········ ' SHARING

~ i i I i
B 1soooo ···-····-·j····-·····j··········j···· /--!
U : : : I :

s 125000 ---------+···-·····1-····-····+ ,.-·····!
~ ~ : I ~

c 100000 ·······---~----------i······· -•-········-:
y i i //1 i
c : : / : :
1 1sooo ----····-·r········· . ;.··· -···:·····--·--:

e
s

: j(: :

50()()() ·------···i---- ·-~-~--·-----·-~--·-------1 : / : : :
: / : : :

25000 ······----' ·-'···---·j···--·····t····-·-···i
f·-·---r-----+-----~UNIPROCESSOR

0
4 16 32

Block Size (bytes)

Figure 5-15: Classification of Bus Cycles
forTOPOPT

The proportion of sharing-related bus cycles for

TOPOPT ranged from 56 to 94 percent Because

they were such a majority of total bus cycles, their

behavior forced bus utilization to follow suit.

122

360000 ---------- ---------T·------T·--------1

B
300000 ---------r- -----r---------r·-------~

~ 240000 -····-··-·j········ j--········t·······-··j
~- j ;TOTAL

C I 80000 ······-···j--~-,:····j··-··-··-·:-··-·····-j
y ' ' ' ' '
c f ·,_; i !
1 ' ' ... _ ' '

e
s

120000 ··········J··-·.,.·~··r·-··'-•+::::::·:.:+UNIPROCESSOR

: : :
i : - - +- - - ~SHARING

60000 ········-+·---····-r-·······-:-···-·····1
0

4 16 32

Block Size (bytes)

Figure 5-16: Classification of Bus Cycles
for SPICE

SPICE was typical of programs with sequential

sharing. The decline in sharing-related bus cycles

reinforced a corresponding drop in uniprocessor

bus cycles, producing a falling bus utilization

curve.

vides a larger perfmmance boost than increasing either block size or set associativity [Przy88].

There are two factors that contribute to the greater improvement. First, the miss ratio is more

responsive to cache size than to increases in the other two parameters. Second, the longer cache

access time of larger caches is less severe a penalty to effective access time than the cost of

increasing either of the other parameters, particularly, the increase in bus traffic with a larger

block size.

All of the traces exhibit the expected falling bus utilization (see Figure 5-17), and for the

usual reason: a miss ratio t'lat declines with increasing cache size (see Figure 5-9). The decline

is particularly sharp for the programs with sequential sharing, CELL and SPICE, and their bus

utilization curves reflect the drop. The decrease in the miss ratios did not translate directly into

100 ··-- : ! .. : -----~---~----1
L. ' ' '

90 ··-··---..:.··--+---- ·····-
: : -, .. : ! ! :

10 ·····-l---·+--~----+--t--l

"' : i\ : i :
p 70 ·······!··--t-·--:-:r·-+···--t-···-i

. :' j \ i ! ! e
r
c
e
n
t

60 ····-; ·-T··~;-r·'·~T·····;---;

SO ··-·t--· . : ····\f---··t···-··i POPT

40 ·······i---····i-··-·-1-······· -.·-t--··---1
i ~ ! ! '·,~~ ' i

30 ·····-1·······•······-+······4···-··~CEU.
i i i i i !SPICE

20 -------r----·--r------t----t-----r------1
I O ···-·~··-···t···-t···-t····· 1·-···j
0~---~--~--~~~~--~

16 32 64 121 2:S6 Sl2

Cache Size (KbyteS)

Figure 5-17: Effect of Cache Size
on Bus Utilization

As is true for uniprocessor programs, bus utiliza­

tion for the parallel programs declined with in­

creasing cache size. The benefit of enlarging the

cache was greatest for the two programs with

sequential sharing, CELL and SPICE. (All cache

size graphs assume a 32 byte block.)

p
e
r
c
e
n
t

Cache Size (KbyteS)

123

Figure 5-18: Uniprocessor Bus Utilization

Bus utilization was higher than its uniprocessor

component The ranges for the individual traces

are: 1.04 to 3.1 higher for SPICE, 1.2 to 3.7 higher

for VERIFY, 1.1 to 5.1 higher for CEll and 1.9

to 17.7 higher for TOPOPT.

Cache Size (Kbytes)

Figure 5-19: Rat.o of Sharing Bus Cycles to Total Bus Cycles

The proportion of sharing-related bus cycles to total cycles rises sharply with increasing cache size. For

large caches, they comprise the largest component of bus utilization.

124

a comparable change in bus utilization, because of a rise in both the number of cache-to-cache

transfers and the number of invalidations. Under the Berkeley Ownership cache coherency pro­

tocol, cache-to-cache transfers are the mechanism for satisfying processor reads to dirty shared

data. As cache size increases, the number of cached dirty shared blocks also increases, and

therefore the number of cache-to-cache transfers goes up. In the simulator's memory system

(and the implementation of SPUR as well), cache-to-cache transfers require more cycles than

memory transfers. The shift to the more expensive type of data transfer, as cache size increases,

flattens the bus utilization curve. A more optimized cache controller implementation or a

slower memory would have produced a steeper drop. (The effect of invalidation signals on bus

utilization was discussed in section 5.3.1.)

The proportion of sharing-related bus cycles to total bus cycles is depicted in Figure 5-19.

For all traces, cycles due to invalidation signals and invalidation misses rise sharply with cache

size. For large caches (128K bytes and up), they dominate bus bandwidth demands. (Results in

[Site88] also indicate a rising proportion of sharing traffic with increasing cache size, although

the sharing traffic does not dominate, even with one megabyte caches. Traces for their study

are concatenated samples of memory references of CAD and expert systems applications run­

ning under MACH, in a two processor multiprocessor.)

5.4. Concluding Discussion

5.4.1. Implications for Cache and Bus Designers

Cache design is an optimization problem. Its goal is to minimize effective access time by

changing various cache parameters. The difficulty is that these parameters alter cache perfor­

mance in conflicting ways. For example, increasing cache size decreases the miss ratio, but at

the expens~ of a longer cache access time. Increasing the block size also decreases the miss

ratio, but only until the pollution point is reached. After that, larger block sizes produce a rising

125

miss ratio. An additional drawback of all block size increases is the accompanying increase in

the amount of data that is transferred in a single bus operation. The increase in the average

cycles per transfer can cause bus utilization to rise even before the pollution point is reached.

Parallel programs, running under write-invalidate coherency protocols, complicate cache

design by introducing another factor into the optimization problem: invalidation misses. The

studies in this chapter have shown that invalidation misses increase miss ratios, sometimes

enough to reverse declining miss ratio curves produced by the other factors. For example, as

cache size increases, the number of invalidation misses also increases. Invalidation misses

occur in smaller caches as well, but in the guise of replacement misses. With larger caches,

some replacement misses for instructions and private data are eliminated; those to shared data

can only be converted to invalidation misses. The result is a miss ratio that, for most of the

traces, ranges from 2.2 to 4.7 times greater than its uniprocessor component, and 15 times

greater in the worst case.

Sharing references also derive less benefit than uniprocessor references from a larger

block size. Increasing block size either increases the number of invalidation misses or

decreases them at a rate that is less than for uniprocessor misses. The type of miss behavior

depends on whether the program exhibits sequential or fine-grain sharing. In the former, invali­

dation misses decline with block size, and produce a miss ratio that is higher than for compar­

able uniprocessor programs. When there is fine-grain sharing, the number of invalidation

misses rises dramatically with block size. The incr~ase is enough to rever:se the declining miss

ratio that occurs with uniprocessor programs in caches of this size (128K bytes).

In all cases the miss ratio is higher than in uniprocessor caches. Therefore designers must

use larger or more complex caches9 to obtain the same performance in multiprocessors; even

then, they might not be able to obtain this level, because some costs of sharing are inherent in

9 For example, greater associativity, multi-level caches, etc.

126

the algorithm, and are unaffected by cache design changes. The choice of block size is depen­

dent on the anticipated workload mix, in particular the balance between programs that exhibit

sequential or fine-grain sharing.

The additional cache misses, of course, increase bus utilization. Moreover, sharing under

write-invalidate protocols introduces another type of bus operation, the invalidation signal,

which further increases bus utilization. Bus utilization was 1.04 to 17.7 times higher with

increasing cache size, and 1.3 to 17.7 times higher with increasing block size. Even for the

small-scale multiprocessors studied, the bus was well utilized, with typical bus utilization

figures ranging from 30 to 70 percent. The implication for bus design is a need for additional

speed in order to support a larger scale, single-bus multiprocessor. Fast bus architectures (for

example, split transaction bus protocols) and faster bus implementations (for example, bipolar

or optics) are e\·~n more important in multiprocessors than uniprocessor systems.

5.4.2. Implications for Parallel Software Writers

The performance of parallel programs may be improved by a variety of software tech­

niques for restructuring shared data. The techniques can be used by applications programmers

and operating system designers, or compiler writers.

We have seen that shared references were responsible for considerable overhead in the

cache and bus performance of parallel programs. Invalidation misses comprised a substantial

proportion of total misses for moderate block sizes (32 bytes, and even smaller for some traces)

and large cache sizes (128K bytes and up). For all block sizes and large caches, sharing-related

bus traff.c accounted for the majority of total bus cycles.

As multiprocessor caches continue to increase in size, uniprocessor misses will become a

decreasingly smaller proportion of total traffic; and a correspondingly larger proportion will be

due to sharing. Adding processors to such systems will increase sharing traffic in absolute

terms. The bonom line is that it is the sharing traffic that will determine bus bandwidth

127

demands, and will eventually limit the scale of the single-bus multiprocessor by creating a bus

bottleneck.

Given that multiprocessors already have large caches, the bottleneck can only be post-

paned by improving the cache and bus performance for the shared data portions of the parallel

programs. One observation of the programs studied here is that their memory reference pattern

to shared data within the cache block largely determines the coherency cost, measured by miss

ratios and bus utilization. Sequential sharing reduces the number of invalidation signals and

invalidation misses, which lowers these metrics. On the other hand, fine-grain sharing, i.e.,

poor sequential sharing, has the opposite effect. Thus better memory organization for shared

data can improve program execution. 10 If shared data accessed by different processors are allo-

cated to separate cache blocks, then programs with fine-grain sharing should obtain lower

coherency costs, and an improvement in overall performance.

Better data alignment can occur by at least two different means. The first is through expli-

cit programmer specification of the organization of shared data and runtime support for its allo-

cation in shared memory on cache block boundaries. Currently, shared variables may be

dynamically allocated by a system runtime routine that makes the data visible to all processes.

In the proposed data alignment scheme, the programmer would be responsible for grouping

those shared variables that are used by different processors via separate system calls. The rou-

tine itself would allocate the shared data in each invocation on cache block boundaries, padding

out the block when necessary. The advantage of this approach is the simplicity of its imple-

mentation; it is a very straightforward technique for reducing bus traffic under software control.

Its disadvantages are that it places the responsibility for optimal runtime memory usage of

10 Improvements can also come from algorithmic developmenL For example, waveform relaxation techniques

for circuit simulation have better parallel program throughput than the original direct method. The improvement

comes because the shared structures (subcircuits) can be more easily partitioned among the processors than in the ori­

ginal method. A further benefit (that also exists in uniprocessor implementations) occurs because only those nodes

whose input values have changed during the current time step by a nontrivial amount are reevaluated in the next step.

118

shared variables entirely on the programmer and requires that the runtime system be aware of

the cache block size.

A second method for improving the memory organization of shared data addresses the

issue of programmer responsibility, but at an extremely high cost in implementation complex­

ity. The approach involves the automatic compiler detection and consequent memory alloca­

tion of per processor shared variables. The techniques involved are similar to those used both

for the lifetime analysis of objects to reduce garbage collection overhead [Rugg88] and in res­

tructuring Lisp programs for concurrent execution [Laru88]. The problem is difficult, because

the compiler must analyze references to pointers rather than discrete variables. The set of

objects that are linked by pointers may be arbitrarily complex, and it is difficult to detect their

dynamic relationship. A precise solution is intractable; in practice, the technique could prob­

ably only be used for a subset of easily recognizable structures. Moreover, a compile time

analysis produces a conservative, worst-case estimate that may not reflect the actual execution

behavior of the program. This can lead to wasted memory and additional bus traffic, because

small objects would be allocated to larger cache block units. At this point, automatic compiler

detection of shared data that is actually used by a single processor is an open research question;

it is not clear that freeing the programmer of the responsibility for optimally allocating shared

data is worth the complexity of the automatic solution. The programmer-initiated solution

should be tried first to determine whether it can produce the performance benefits of good

sequeatial sharing.

129

S.S. References

[Agar88] A. Agarwal, J. Hennessy and M. Horowitz, "Cache Performance of Operation

System and Multiprogramming Workloads", ACM Transactions on Computer

Systems, 6, 4 (November 1988), 393-431.

[Alex86] C. Alexander, W. Keshlear, F. Cooper and F. Briggs, ''Cache Memory

Performance in a UNIX Environment", Computer Architecture News, 14, 3 (June

1986), 14-70.

[Cher88] D. F. Oleriton, A. Gupta, P. D. Boyle and H. A. Goosen, "The VMP

Multiprocessor: Initial Experience, Refinements and Performance Evaluation",

Proceedings of the 15th Annual International Symposium on Computer

Architecture, Honolulu, HA (May 1988), 410-421.

[Egge88] S. J. Eggers and R. H. Katz, "A Characterization of Sharing in Parallel Programs

and its Application to Coherency Protocol Evaluation'', Proceedings of the 15th

Annual International Symposiwn on Computer Architecture, Honolulu HA (May

1988), 373-383.

[Good87] J. R. Goodman, "Cache Memory Optimization to Reduce Processor/Memory

Traffic", Journal ofVLSI and Computer Systems, 2, 1 & 2 (1987), 61-86.

[Hil187] M. D. Hill, "Aspects of Cache Memory and Instruction Buffer Performance",

Technical Report No. UCB/Computer Science Dpt. 87 {381, University of

California, Berk.eley (November 1987).

[Laru88] J. R. Larus and P. N. Hilfinger, "Restructuring Lisp Programs for Concurrent

Execution", Proceedings of the ACM!SIGPLAN Notices PPEALS 1988, 23, 9

(September 1988), 100-110.

[Przy88] S. Przybylski, M. Horowitz and J. Hennessy, "Performance Tradeoff's in Cache

Design", Proceedings of the 15th Annual International Symposium on Computer

Architecture, Honolulu, HA (May 1988), 290-298.

[Rugg88] C. Ruggieri and T. P. Murtagh, "Lifetime Analysis of Dynamically Allocated

Objects", Conference Record of the 15th Annual ACM Symposium on Principles

of Programming Languages, San Diego CA (January 1988), 285-293.

[Site88] R L. Sites and A. Agarwal, "Multiprocessor Cache Analysis Using A TUM",

Proceedings of the 15th Annual International Symposium on Computer

Architecture, Honolulu, HA (May 1988), 186-195.

[Smit85] A. J. Smith, "Cache Evaluation and the Impact of Workload Choice",

Proceedings of the 12th Annual International Symposium on Computer

Architecture, 13, 3 (June 1985), 64-73.

[Smit87] A. J. Smith, "Line (Block) Size Choice for CPU Caches", IEEE Trans. on

Computers, C-36, 9 (September 1987), 1063-1075.

6

6.1. Introduction

Evaluating the Performance

of Four Snooping
Cache Coherency Protocols

Both write-invalidate and write-broadcast coherency protocols have been criticized 1 for

0eing unable to achieve good bus performance across all cache configurations. Write-invalidate

performance can suffer as coherency block size increases, because of inter-processor contention

for addresses within the cache block (see Chapter 5, sections 2.1 and 3.1 and [Egge89]). Large

cache sizes will hurt write-broadcast, because of continued bus updates to data that remains in

the cache but is no longer actively shared.

Enhancements to the original protocols have been proposed to solve each problem. A

read-broadcast extension [Good88, Sega84] to write-invalidate reduces the number of misses for

invalidated data by allowing all caches with invalidated blocks to receive new data when any of

them issues a read request. It should therefore improve both the miss ratio and bus utilization of

1 The criticism is unpublished, but widely verbalized in the research community.

131

write-invalidate. A competitive snooping protocol, introduced in [Karl86, Karl88], was

designed to limit the number of broadcasts in write-broadcast. It therefore puts a cap on the

performance loss caused by large caches.

The goal of this chapter is twofold: first, to measure the performance problems in the

write-invalidate and write-broadcast protocols, as block or cache size increases; and second, to

gauge the extent to which the read-broadcast and competitive snooping extensions solve each

problem. The results indicate that read-broadcast reduces the number of invalidation misses,

but at a high cost in processor lockout from the cache. The net effect can be an increase in total

execution cycles. Competitive snooping benefits only those programs that exhibit sequential

sharing. For programs characterized by inter-processor contention (fine-grain sharing) for

shared addresses, competitive snooping can degrade performance by causing a slight increase in

bus utilization and total execution time.

The remainder of this chapter contains the two companion protocol studies. Each begins

with empirical evidence of the performance loss caused by increasing block or cache size in the

original protocol. Then the protocol extensions are described, and the extent to which they

improve performance is measured. Section 6.1 briefly reviews two aspects of write-invalidate

protocols: the origins of additional coherency overhead caused by large coherency block sizes

that was explained in Chapter 4, section 7; and the effects of the overhead on miss ratio and bus

utilization studied in Chapter 5. Section 6.2 presents the read-broadcast extension and its

benefits and costs to both performance and cache controller implement~tion. The effects of

increasing cache size on bus traffic under write-broadcast protocols is covered in section 6.3.

Section 6.4 discusses the competitive snooping alternative and its performance relative to

write-broadcast. The last section integrates the results of both studies.

132

6.2. The Write-Invalidate Protocols

6.2.1. The Write-Invalidate Trouble Spot

Write-invalidate protocols maintain coherency by requiring a writing processor to invali­

date all other cached copies of the data before updating its own. It can then perform the current

update, and any subsequent updates (provided there are no intervening accesses by other proces­

sors) without either violating coherency or further utilizing the bus. Because they create a data

writer that can access a shared block without using the bus, write-invalidate protocols minimize

the overhead of maintaining cache coherency in two cases: when there are multiple consecutive

writes to a block by a single processor (sequential sharing), and when there is little inter­

pmcessor contention (fine-gmin sharing) for the shared data. Periods of severe contention, how­

ever, cause coherency overhead to rise. Inter-processor contention for an address produces

more invalidations; the invalidations interrupt all processors' use of the data and increase the

number of invalidation misses to get it back. The result is that shared data pingpongs among

the caches, with each processor's references causing additional coherency-related bus opera­

tions. The greater the number of processors contending for an address, the more frequent the

pmgponging.

The problem is exacerbated by a large block size, because contention can occur for any of

the addresses in the block. Therefore the probability that the block will be actively shared

increases. An invalidation to one word in a block causes all other words to be invalidated.

When other processors subsequently reread these addresses, additional read misses are incurred.

The overhead is paid even when a processor reads an address that was not updated. With small

block sizes, particularly those of only one word, a write to one address has less effect on reads

to another.

133

6.2.2. Empirical Evidence for the Trouble Spot Analysis

Chapter 5 studied the effect on both miss ratio and bus utilization of increasing block size

and cache size under write-invalidate protocols. (The particular write-invalidate protocol used

in the simulations was Berkeley Ownership.) The results quantify the loss in perfonnance due to

invalidations and invalidation misses. In particular, they support the above analysis concerning

the adverse effects of fine-grain sharing, as block size increases.

Parallel programs, with or without contention, suffer from coherency overhead. Unlike

uniprocessor misses [Agar88, Alex86, Good87, Hill87, Smit87], invalidation misses react less

favorably to increasing block size. Chapter 5 found that the proportion of invalidation misses to

total misses actually increased with larger block sizes, and for three of the traces was

significant. (The proportions grew from .32 to .37 for CELL, .14 to .30 for SPICE, .06 to .51

for VERIFY and .39 to .94 for TOPOPT, as block size was increased from 4 to 32 bytes.) For

programs with sequential sharing (CELL and SPICE), (total) miss ratios were higher than for

comparable uniprocessor programs and declined with increasing block size at a slower rate.

The effect on programs with fine-grain sharing (TOPOPT and VERIFY) is more severe.

here invalidation misses increased with increasing block size, not only in proportion to total

misses, but in absolute numbers as well. (The proportion of invalidation misses for TOPOPT

and VERIFY is stated above; the percentage increase in number of misses was 511 and 840 per­

cent, respectively.) Their dominance was so complete that they reversed the declining miss ratio

curves that nonnally occur with uniprocessor programs in caches of this si:r.e (128K bytes).

The additional cache misses increased bus utilization. Moreover, sharing under write­

invalidate protocols introduces another type of bus operation, the invalidation signal, which

further increased bus utilization. Bus utilization rose 407 and 94 percent for TOPOPT and

VERIFY, as block size increased from 4 to 32 bytes. Even for the small-scale multiprocessors

studied (12 processors at most), the bus was well utilized, with bus utilization figures of 45 and

134

97 percent, respectively, at the 32 byte block size. Bus utilization for CELL and SPICE was

midrange, higher than for uniprocessor programs, and declined over the block size spectrum.

6.3. The Read-Broadcast Extension

6.3.1. Protocol Description

Since invalidation misses play such a large role in the cache and bus performance of paral-

lei programs at large block sizes, coherency protocols that can reduce them are desirable.

Read-broadcast [Good88, Sega84] is an enhancement to write-invalidate protocols designed

explicitly for this purpose. Under read-broadcast snoops update an invalidated block with data

from the bus, whenever they detect a read bus operation for the block's address. Detection is

positive whenever the tag of the snooped address matches that of a cached block, and the block

state is invalid.

The read-broadcast extension adds little complexity to the cache controller hardware. An

examination of the SPUR cache controller implementation indicates that one additional min-

term is required in the snoop PLA for the detection. Assuming that the snoop can have access

lo the cache in a short and bounded amount of time, a buffer large enough to hold the data as it

comes from the bus is also needed. If timely snoop access to the cache cannot be guaranteed,

an extra bus line is necessary to delay transmission of the data. Finally, control to implement

read-interference2 is required to meet the invalidation miss limit, described below.

The technique improves the performance of write-invalidate by limiting the number of

invalidation misses to one per invalidation signal. One invalidation miss occurs if the bus

operation is a read issued by a cache with a previously invalidated block. No invalidation

2 Read-interference occurs when a processor has queued a bus read request for an address that is read-broadcast

before the requesting processor obtains the bus. During the read-broadcast the requesting processor updates its cache

with data from the bus. Therefore it can satisfy its read reference directly from the cache and no longer requires the

bus operation. Control is needed to detect the interference and cancel the pending read bus operation.

135

misses result when the bus read is a first-reference or replacement miss. Subsequent rereads by

processors that have received data on a read-broadcast will be a cache hits rather than invalida-

tion misses.

6.3.2. Read-Broadcast Results

6.3.2.1. The Benefits to Miss Ratio and Bus Utilization

Read-broadcast reduced the number of invalidation misses (see Table 6-1). For three of

Com arisen of Berkelev Ownership & Read-Broadcast

Trace Block Invalidation Misses Miss Ratio

Size Berk. Read Decrease Berk. Read Decrease

(bvtes) Own. Bdcast. (percent) 0\\'Il. Bdcast. (percent)

CELL 4 22649 13566 40.1 1.93 1.67 13.7

CELL 8 18823 11264 40.2 1.49 1.28 14.1

CELL 16 15040 8942 40.5 1.10 0.93 15.6

CELL 32 11748 7325 37.6 0.86 0.73 14.4

SPICE 4 6918 6663 3.7 2.90 2.97 -2.2

SPICE 8 4143 3870 6.6 1.64 1.65 -0.2

SPICE 16 3607 3447 4.4 1.09 1.10 -0.4

SPICE 32 3726 3009 19.2 0.77 0.74 3.4

TOPOPT 4 1890 922 51.2 0.15 0.12 20.1

TOPOPT 8 6117 4706 23.1 0.25 0.20 17.2

:1 TOPOPT 16 8835 6459 26.9 0.30 0.23 23.2

TOPOPT 32 11556 7385 36.1 0.37 0.25 33.8

VERIFY 4 2441 2062 15.5 1.42 1.41 1.0

VERIFY 8 8921 7786 12.7 1.38 1.34 2.6

VERIFY 16 15371 11497 25.2 1.40 1.28 9.1

VERIFY 32 22957 13717 40.2 1.45 1.17 19.4

T~ble 6-1: Comparison of Invalidation Misses and Miss Ratio

for Berkeley Ownership and Read-Broadcast

This table depicts the decline in the number of invalidation misses and the miss ratio that occured with

read-broadcast. The drop in invalidation misses was less pronounced for SPICE, because its shared data

had been optimized for a block size larger than the maximum studied here. This small decline, coupled

with a slight rise in uniprocessor misses, produced rising miss ratios (negative decreases) for some block

sizes. (All simulations were run with a 128K byte cache; miss ratios are the geometric mean across all

processors.)

136

the traces (CELL, TOPOPT and VERIFY) the drop ranged from 13 to 51 percent, over all block

sizes. The decrease for SPICE was much lower. SPICE data structures had been explicitly

sized to the ELXSI 6400 64-byte cache block to avoid inter-processor contention for addresses

within a block. Therefore, for block sizes considered in this study, up to 32 bytes, little conten­

tion was observed; and read-broadcast consequently brought less benefit.

Because of the decrease in invalidation misses, the proportion of invalidation misses

within total misses was less than for write-invalidate (see Figures 6-1 and 6-2). This is impor­

tant, because increases in block and cache size produce steeper reductions in uniprocessor

misses than invalidation misses. Therefore, to the extent that misses in parallel programs are

caused by normal cache accesses rather than sharing activity, cache performance will improve

as block and cache sizes increase. At larger block sizes invalidation misses for CELL,

TOPOPT and VERIFY dropped to between a quarter and a third of the total. (Under Berkeley

Ownership they had ranged from thirty to over forty percent.) But for TOPOPT invalidation

misses still dominated miss ratio behavior at most block sizes (90 percent at 32 bytes at max­

inurn). As with the original write-invalidate protocol, the ratio of invalidation to total misses

for all traces rose with increasing block size.

For the most part the consequence of the drop in invalidation misses was a decline in the

total miss ratio (again, see Table 6-1). CELL and TOPOPf had moderate decreases (13.7 to

15.6 percent and 17.2 to 33.8 percent, respectively); VERIFY had a wider range of decrease

(1.0 to 19.3 percent). The miss ratio for SPICE did not decline across all block sizes, and, when

it did, the decrease was small. The small increases occured because the samples in comparative

(Berkeley Ownership vs. read-broadcast) simulations covered a slightly different set of refer­

ences. The difference in sampl~s was caused by the elimination of invalidation misses from the

read-broadcast simulations. Changing invalidation misses to cache hits allows processors to

process references more quickly than under Berkeley Ownership. The effect is to slightly alter

l.O -------------~------------~------------T·----------·: OPOPT

0. 9 ••••• ------- -~ ••• ------- ""7•"" ------------ ..

f 1 : :
0.8 -----------··r··----------:- .. - ------r------------1
o.? -----------·-r·-.. ·------ t····--··-----r-----------·-i

: : : :
o.6 -------------r------- ····t···----------r---------·-·i

: : : :

:: ::::::::::::·:·::.::::::::t:::::~:~:r::::~::··j~IFY
-----+-- :

::: :::-·:_:::::f~~:_:;:·:-~;~:~::.::c~~::~:JSPICE
j i i o.o-1---;..---;---;;--__,

4 8 16 32

Block Size (bytes)

Figure 6-1: Ratio of Invalidation Misses
to Total Misses for Berkeley Ownership

The ratio of invalidation misses to total misses in­
creases as block sizes increase. At larger block
sizes the invalidation misses of three of the traces
comprise a substantial portion of the total; and for
TOPOPT they dominate miss ratio behavior. (The
numbers are the geometric mean of the ratio of in­
validation to total misses, across all processors.)

137

l.O ----------·-·r·---------·-r··-------··r··---------1
0.9 ··-----------~---·········t··--·-----··t··········· : fOPOPT

0.8 -----------··r······-·---·-r···------ --~-------------:

0.7 -------------r------------: -----------r-------------:

:: ::_.: ... ·:.::·:··:: .. :::::1 .. :::::·::::1·--·····::.:J
i i i iVERlFY

0.3 ···········-·f ··········+-------------~---···-· -·•cELL
' - - - ~ - - - _-·-l!-sPICE

::: ::::::::::::F:-~:-::::~::~:~:~,:r.:~:::::::::
0.0

4 8 16 32

Block Size (bytes)

Figure 6-2: Ratio of Invalidation Misses
to Total Misses for Read-Broadcast

Under read-broadcast the ratio of invalidation
misses to total misses still increases with block
size, although the proportions are lower than with
Berkeley Ownership. At larger block sizes the in­
validation misses for three of the traces have
dropped to between a quarter and a third of the to­
tal; for TOPOPT they still dominate miss ratio
behavior.

the set of references executed and the global order in which they are processed under the two

protocols. For SPICE the consequence was a slight rise in the uniprocessor component of the

miss ratio for read-broadcast (relative to Berkeley Ownership), which offset the small decline in

the number of invalidation misses. For the other traces the sample discrepancy was consider-

ably less, the uniprocessor misses were almost identical, and the reduction in the number of

invalidation misses was also greater. Therefore the drop in invalidation misses produced a

corresponding decline in the miss ratio.

The critical system bottleneck in a single-bus, shared memory multiprocessor is the

bandwidth of the system bus. Therefore the most important consequence of read-broadcast is

138

the effect of its lower miss ratios on bus utilization. The improvement (i.e., drop in bus utilita-

tion) ranged from 8.7 to 10.9 percent for CELL, .8 to 5.1 percent for SPICE, 14.3 to 22.6 per-

cent for TOPOIT and .8 to 11.5 percent for VERIFY. (Details appear in Table 6-2.) To put the

read-broadcast benefit in perspective, the change was large enough to allow an additional two

processors for TOPOIT, and one each for CELL and VERIFY, and still maintain the same level

of bus utilization. (SPICE had lower bus utilization for the block sizes that had a slight rise in

the miss ratio, because the total cycles in the simulation were higher with read-broadcast. The

cycle increase was due to a greater delay in obtaining the bus and several other read-broadcast-

related factors that are discussed below.)

Comparison of Berkelev Ownership & Read-Broadcast
Trace Blocksize Bus Utilization

(bytes) Berkeley Read Decrease
Ownershio Broadcast (oercent)

CELL 4 42.155 38.470 8.743
CELL 8 39.798 35.849 9.924
CELL 16 38.592 34.383 10.906
CELL 32 42.559 38.042 10.614
SPICE 4 59.546 59.070 0.798
SPICE 8 44.821 44.159 1.477
SPICE 16 40.298 39.948 0.870
SPICE 32 42.221 40.061 5.117

TOPOIT 4 8.925 6.979 21.806
TOPOIT 8 21.289 18.247 14.288
TOPOIT 16 30.972 25.656 17.165
TOPOIT 32 45.108 ' 34.895 22.640
VERIFY 4 49.738 49.346 0.788
VERIFY 8 68.380 66.802 2.307 .
VERIFY 16 84.760 79.215 6.543
VERIFY 32 96.566 85.491 11.469

Table 6-2: Comparision of Bus Utilization for Berkeley Ownership and Read-Broadcast

This table depicts the decline in bus utilization that occured with read-broadcast over Berkeley Owner­
ship. (All simulations were run with a 128K byte cache; bus utilization figures are the geometric mean
across all processors.)

139

The magnitude of the drop in both miss ratio and bus utilization was moderate. The per-

formance gain was less than expected because of the extremely sequential nature3 of the sharing

in the programs. Sequential sharing can be measured by several metrics (see Chapter 4, section

3.2). The most pertinent for a study of invalidation misses is the average number of processors

that reread an address between writes by different processors. For all traces this figure averaged

around one (1.1 for CELL, .7 for SPICE, .8 for TOPOPT and 1.0 for VERIFY), with the distri-

bution heavily weighted by zeros and ones. (CELL had the most evenly spread distribution,

with 2 or more processors rereading between 25 and 21 percent of the time. This accounts for

its greater decline in invalidation misses. SPICE had the most skewed distribution, with

between 91 and 98 percent of the writes followed by zero or one rereads. Its improvement was

the least of the traces.) In actual practice the number of invalidation misses was quite close to

the read-broadcast limit of one. This was true even for the traces characterized by fine-grain

sharing (TOP OPT and VERIFY). If there had been more processors involved in the contention,

read-broadcast would have provided greater benefit.

63.2.2. The Cost in Per Processor and System Throughput

The reduction in invalidation misses did not come for free. Read-broadcast has two side

effects that contribute to processor execution time: an increase in processor lockout from the

cache4 and an increase in the average number of cycles per bus transfer. Their consequence for

three of the traces was an increase in total execution cycles over the Berkeley Ownership simu-

lations.

The more important of the two factors is the increase in processor lockout from the cache.

Cache lockout occurs because of CPU and snoop contention over the shared cache resource.

3 Recall that in sequential sharing each processor completes multiple accesses to the shared data before another
processor begi..TJ.s. The alternative is fine-grain sharing, in which there is inter-processor contention for the data.

4 I am referring to the data RAMs. As. stated in Chapter 3, there are two copies of the tags and state, one for the
CPU and one for the snoop.

140

The CPU must use the cache for fetching the current instruction (on a miss in the on-chip

instruction cache or for all instructions if there is no on-chip cache), obtaining data referenced

by the current instruction, and prefetching subsequent instructions. In machines like the one

being simulated, with a RISC-based architecture, no on-chip instruction cache and a cache

access time that matches the cycle time of the CPU, the CPU needs to access the cache each

cycle. 5 At the same time, the snoop also needs access to the c~che for maintaining coherency.

Read-broadcast requires more snoop-related cache activity than Berkeley Ownership, because

snoops must deposit data into the cache on some bus reads and more snoops must update the

processor's cache state on subsequent invalidations. The first operation docs not occur under

Berkeley Ownership, and the latter occurs less frequently. Both activities divert the CPU from

its normal instruction execution and contribute to program slowdown.

The increase in lockout with read-broadcast was substantial (278 to 305 percent for

CELL, 147 to 191 percent for SPICE, 35 to 87 percent for TOPOPT and 143 to 329 percent for

VERIFY). On the average 42 percent of total lockout cycles was attributable to taking data on

read-broadcasts, and 40 percent to the state updates. (Cache-to-cache transfers account for the

remainder.) The increase due to these factors was softened somewhat by the lockout savings

from a decline in cache-to-cache transfers that had satisfied invalidation misses under Berkeley

Ownership.

However, in terms of total execution cycles, processor lockout was a minor cost. The

ratio of lockout to total cycles averaged 5.8 percent for all traces, across most block sizes. 'I'r.e

lone exception was VERIFY's 32 byte block simulation, in which processor lockout accounted

for an appalling 21 percent of total cycles. The importance of processor lockout is that for three

of the traces (CELL, SPICE and VERIFY), its increase wiped out the benefit to total execution

cycles gained by the decrease in invalidation misses. The consequence was a slight increase in

5 In CPUs with instruction caches on-chip, prefetching accesses would replace many of the instruction accesses.

141

total execution cycles, ranging from .9 to 3.6 percent. The lone exception was TOPOIT, in

which the benefit from declining invalidation misses was greater than the cost of processor

lockout; here the improvement in total execution cycles varied from .I to 7. 7 percent, as block

size increased from 4 to 32 bytes.

The negative effect of processor lockout would not be as severe with a more optimized

cache controller implementation. In the SPUR implementation, the priority for using the cache

belongs to the processor rather than the snoop, and the two run on asynchronous clocks. There­

fore the snoop must negotiate to obtain use of the cache (via separate request and grant cycles),

and acknowledge that it has finished. A more optimized implementation would eliminate the

handshaking cycles by using a single clock for the entire system.

A lower bound can be placed on processor lockout by eliminating the extra cycles from

the above results: read-broadcast is then assumed to cost only the number of cycles needed to

fill the cache. The results indicate that, even under these best case assumptions, the increase in

processor lockout cycles is greater than the decrease in invalidation miss cycles for more than

half the simulations. For these simulations read-broadcast still causes a net gain in total execu­

tion cycles. (The major exception was TOPOIT. Since it had fewer execution cycles under

read-broadcast even with the less optimized implementation, it is not surprising that the lower

bound assumptions would bring further improvement.)

The second factor that contributed to an increase in processor execution time was a rise in

the average number of cycles per bus transaction. The increases ranged from .3 to 3.1 percent,

for all traces and over all block sizes, and averaged around one. There are two causes. The first

is the additional cycle required in the read-broadcast implementation for the snoops to ack­

nowledge that they have completed the operation. Under write-invalidate the same snoops are

not actively involved in the bus operation; they merely do a lookup and decide to take no

action. The lookup can easily be subsumed in the time required for either the cache-to-cache or

142

memory transfer that satisfies the invalidation miss. The second is the need to update the

processor's state on both read-broadcasts and simple state invalidations. For both operations

more caches are involved than with invalidation misses and state invalidations under Berkeley

Ownership. Therefore there is a greater probability that the update will be delayed, because the

processor is using the cache to service a memory request.

6.3.3. Write-Invalidate/Read-Broadcast Summary

The criticism of write-invalidate, that multiple-processor contention within the block

would cause excessive invalidation misses as block size is increased, was not born out by the

analysis of these traces. It is true that the number of invalidation misses rose with increasing

block size, and for the traces with fine-grain sharing this caused an adverse effect on miss ratios

and bus utilization. However, most of these misses were caused by a reread by a single proces­

sor. Therefore the read-broadcast solution had less impact than was originally postulated.

Still, at first glance it appears that read-broadcast is a good extension to the write­

invalidate protocols, primarily because it is an extremely low cost solution for the moderate

benefit it provides. However, when the increase in both processor lockout and average cycles

per bus transaction are considered, for most of the simulations the result is a net gain in total

execution cycles.

Read-broadcast would be more beneficial if two conditions were different The most

important is if the workload were one in which more processors were contending for the data

(for example a one producer/several consumers situation). In this case the reduction in invalida­

tion misses would be greater. The second condition, which is a second order effect, is a more

optimized cache controller implementation, designed to minimize the cycles consumed during

processor lockout.

6.4. The Write-Broadcast Protocols

6.4.1. The Write-Broadcast Trouble Spot

Write-broadcast protocols broadcast updates to shared addresses, so that all caches and

memory have access to the most current value. Coherency overhead stems entirely from the

bus broadcasts. They occur for all updates to data that are contained in more than one cache,

and for the first update to an address after the writing processor has the only copy. (In this case

the block has been replaced in the other caches.)

Chapter 5 demonstrated that sharing-related bus traffic will require multiprocessors to

have larger or more complex caches than uniprocessors to obtain comparable performance. The

requirement is particularly troublesome for the write-broadcast protocols, because larger cache

sizes can cause an increase in broadcast operations. As cache size grows, the lifetime of cache

blocks increases because of a decline in block replacements. Shared data tends to remain in a

cache for longer periods of time, long past the point when its processor has fipjshed accessing it.

However, its presence in the cache drives the shared bus line, giving the illusion of sharing.

Therefore write-broadcasts continue for data that is no longer being actively shared.

6.4.2. Empirical Support for the Trouble Spot

The traces confirm this analysis. For all traces, the number of write-broadcasts rises with

increasing cache size (see Figure 6-3). CELL and SPICE have a much larger increase than

TOPOPT and VERIFY (84.2 and 100.3 percent over the entire cache size r.ange, versus 3.7 and

15.2 percent). The steepness of their rise correlates with several factors, the most important of

which 1s the pattern of inter-processor references to shared data. For CELL and SPICE this pat­

tern is characterized by sequential sharing for shared data in a coherency block. Sequential

sharing is indicated by long average write run lengths for the blocks. (The exact figures are 4.9

writes per write run for CELL and 6.2 for SPICE.) In small caches not all the writes in a long

40000

35000

B 30000
r
0 25000
a
d 20000
c
a

15000 s
t
s 10000

5000

0

......................... ~-----· .. ------- .. ------ .. -------·
I I I I I I

i i i i i .. CEIL

------i-------t------i------~---t--~--!
I I I / I I I

------L----~----"t l.-----L-----1

--L;,f~+-_=:L=L·---;~
··----~ • lll"' • • • •

j /! i i j i
------~7·-r·--T·--·r····:-----··:

...... T ·t·-----t-------t··----t-----·troroiYr
-·---"1" ---- --:-- ----:·------t ------:---. ---:

16 32 64 128 256 512

Cache Size (K)

Figure 6-3: Write Broadcasts
to Shared Data under Firefly

In the Firefly protocol the number of write­

broadcasts increases with increasing cache size

for all traces, given credence to the "illusion of

sharing" hypothesis.

144

100 --·-·· . ----·-··-··-··:--····-·r··-·-··:-····--·:

90 --·----~:-~~-- -L---+·-·---f-------j

:: :::::::t:~:~t:~::t~~:-.:~::::··:t:::::::J
p i i' i \i : :VERIFY
e 60 -----·····-·--·-··-·"'·--·-·..,.-·----· .. ·-··--··

r : l ~ { l l
c so ---···-r ·---·:-·---··:---~-:--...·.:::·:·······: e : : : .._ ,._ __ ._.SPICE

40 -------t----- -~-------+-------r--~-~~-------~
n i ' : i t- - ... CELL

t 30 ·······t·--·-·t·---- i --··-·r·--····t·······~ OPOfYI'

20 ·-·--··j·····-·i--·····t·------:-·---··l---.. --1
10 -------!··-----r····t--··--r-------:-------1

0
16 32 64 128 256 512

Cache Size (K)

Figure 6-4: Bus Utilization
under Firefly

Despite the rise in write-broadcasts, bus utilization

fell because of the benefits of large caches on

uniprocessor misses.

write run result in write-broadcasts. First, shared data is replaced more frequently than in larger

c.1:hes, and, secondly, in these traces only two processors are involved in the sharing the vast

majority of the time. The combined effect is that data may reside in only one cache for the final

writes in a write run, allowing these writes to take place locally. In an infinite cache, all writes

become write-broadcasts, because blocks remain in the cache indefinitely. Therefore, as cache

size increases, more writes in a long write run will result in bus broadcasts; and .the greater the

average write run length, the greater the increase in write-broadcasts. TOPOPT and VERIFY,

on the other hand, had short average write run lengths, 1.21 and 2.2, respectively. Tk smaller

length was one of the factors responsible for the more level write broadcast curves, as cache

size increased.

145

A second factor contributing to the shape of the curves is the rate of block replacement.

Within a particular trace, the increase in write-broadcasts (with cache size) is most pronounced

for smaller caches, where the drop in block replacements is also greatest. Finally, at large cache

sizes the working sets of TOPOPT and VERIFY fit into the cache. The number of block

replacements drops to zero and the level of write-broadcasts remains constant

Despite the rise in write-broadcasts, bus utilization fell for all traces (see Figure 6-4).6 The

decrease is due to the positive effects of increasing cache size on the uniprocessor component of

bus utilization, which dropped an average of 84 percent over the cache size range. It is offset

somewhat by the increase in write-broadcast cycles (see a representative trace in Figure 6-5).

For all traces, the proportion of write-broadcast cycles within total cycles increased

dramatically with increasing cache size (see Figure 6-6). The increase only leveled off at the

point at which the working set of the program fit into the cache. At the largest cache sizes the

write-broadcast cycles dominated bus activity for all traces. The high ratio of sharing cycles to

total cycles means that with large cache sizes, sharing bus traffic will be the cause of the bus

bottleneck. Therefore a protocol that limits the number of write-broadcasts is desirable.

6.5. Competitive Snooping

6.5.1. Protocol Description

Competitive snooping [Karl86, Kar188] is a write-broadcast protocol that switches to

write-invalidate when the breakeven point in bus-related coherency overhead between the two

approaches is reached. The breakeven point for a particular address occurs when the sum of the

write broadcast cycles issued for the address equals the number of cycles that would be needed

for rereading the data had it been invalidated. Competitive snooping thus limits coherency

6 The only exception is the transition to a 512K byte cache for SPICE.

B
u
s

::: :::::::r:::::r::::::r:::::::r:::::r:::::::l

0. 8 :::::::i::::::·:·:::::::r::::::: ::::::::1::::::::: u 0.7

t 0.6 ····--+~·~,+-·· ··f······+·····+······l
0.5 ·······t·······j·\:···t·· ··+·······j········j

: : \ : . : :
0.4 ·······-:-·······:·····""\·~·-·····-:-··· ··········:

! ! +.. j i :TOTAL

146

1.0

0.9

0.8

0.7

0.6

0.5 VERIFY

0.4 1
z
a
t
i
0

0.3 ·······-:········l·······-~··"'···+·······l········l i [['~ _ ...j.- - ""'fWRITE·BROADCASTS

0.2 ·······+·······i······;;:i!-·-···-:-"'"":···:········:

0.3

0.2

_______ l ____ d __ ~ ___ j _______ l ____ ~:!:.-~---l
0

•
1 f j ! j j '~UNIPROCESSOR

o.o.,__.,__.,__.,__.;--.Y.....--i
n

16 32 64 128 256 512

Cache Size (Kbytes)

Figure 6-5: Bus Cycles for CELL
under Firefly

This classification of bus cycles for CELL illus­

trates the effect of write-broadcast cycles on total

bus cycles, using the Firefly protocol. Write­

broadcast cycles rise with increasing cache size;

uniprocessor bus cycles tend to fall. The two ef­

fects produce bus utilization that still declines, but

less steeply than for uniprocessor programs.

overhead to twice that of optimal. 7

0.1

o.o-1---...._-~-...;..-.....;..---;_--;

16 32 64 128 256 512

Cache Size (K bytes)

Figure 6-6: Ratio of Broadcast Cycles
to Total Bus Cycles

The ratio of write-broadcast cycles to total bus cy­

cles increases with increasing cache size under

Firefly. The rise is much steeper for the traces

with longer average write run lengths, CELL and

SPICE.

The first algorithm proposed in [Karl86] (called "Standard-Snoopy-Caching") assumes

that ar1 adversary Carl choose arJY processor to either write or reread a shared address. A

counter, \vhose initial value is t...'1e cost in cycles of a data trarJsfer, is assigned to each cache

block in every cache. On a ·.vrite broadcast, a cache that contains the address of the broadcast is

7 Larry R:Jdolph makes a very apt analogy between the rationale behind competitive snooping and the diiemma

faced by any novice skier. The beginning skier is hesitant to buy skis immediately for fear that his/her interest in ski­

ing might be a passing fancy. On the other hand renting week after week can be costly. The pivotal question is

therefore when to stop renting and make the purchase. Not knowing ahead of time which will be his or her prefer­

ence, the budding skier should rent until he or she has spent an amount equivalent to the purchase price of new skis;

and then buy the skis. Like competitive snooping, this course of action limits the total cost to twice that of optimal.

147

(arbitrarily)8 chosen, and its counter is decremented. When a counter value reaches zero, the

cache block is invalidated. When all counters for an address, other than that of the writer, are

zero, write-broadcasts for it cease. Any reaccess by a processor to an address resets its cache's

counter to the initial value. The algorithm's lower bound proof demonstrates that the total costs

of invalidating are in balance with the total costs of rereading.

In an alternate algorithm (called "Snoopy-Reading") the adversary is allowed to read­

broadcast on rereads. In order to obtain the lower bound of the previous algorithm, the

coherency algorithm is given the same capability. All other caches with invalidated copies take

the data, and reset their counters. As in the original scheme, when a cache's counter reaches

zero, it invalidates the block containing the address; and write broadcasts are discontinued,

when all caches but that of the writer have been invalidated.

Read-broadcasting by the adversary also prompts other changes in the coherency algo­

rithm. For example, on a write-broadcast all caches that contain the updated address decrement

their counters rather than only one; and the decrementing is done on consecutive write broad­

casts by a particular processor, rather than any processor. The simultaneous decrements com­

plement the simultaneous cache updates on read-broadcasts, i.e., they reduce the costs of broad­

casting to match the cheaper rereads. The single writer requirement corresponds to all counters

being reset on an access by another processor. More than one processor referencing the data

indicates (obviously) that there is sharing. As long as data is shared, a good competitive

coherency algorithm will broadcast rather than invalidate. Broadcasting. occurs as long as

counter v<ilues are greater than zero. Therefore when a processor other than the writer accesses

the data, all counters arc reset to force broadcasting.

The advantages of the alternate scheme over the original are that (1) it is well suited for a

workload in which there are few rereads (as is the case with these traces) and (2) its

8 The particular choice of cache does not affect the worst-case bound.

148

implementatiQn doesn't require hardware to "arbitrarily" choose a cache for counter decrement­

ing. When there are few rereads, a competitive coherency algorithm should make the data

private sooner rather than later, in order to avoid unnecessary broadcasts. By requiring all pro­

cessors to decrement their counters simultaneously, Snoopy-Reading can invalidate more

quickly than Standard-Snoopy-Caching.

In the simulator's implementation of Snoopy-Reading, a writing processor keeps track of

the number of its consecutive writes to each address (through cache state values). When the

breakeven point for broadcasts has been reached, it signals to the other caches to invalidate.

The breakeven point was defined to be the maximum of the ratio of data transfer to write­

broadcast cycles that is used in the algorithm and the value three. The constant insures that

write-broadcasts will continue long enough to prevent busywaiting over the bus. A processor

uses the first of the three broadcasts for setting the lock, and the second for clearing it. At this

point the lock is still present in other caches, and processors can detect locally that it has been

freed. On the third broadcast (which, if it occurs, demonstrates that the address is not a lock),

the data is invalidated. This implementation requires a six-value coherency state, and a

correspondingly larger PLA for both the snoop and the portion of the cache controller that ser­

vices memory requests for the CPU.

6..5.2. Competitive Snooping Results

Competitive snooping decreased the number of write-broadcasts issued for all traces (see

Table 6-3). The benefit was greater for those traces whose pattern of access to shared data

within a coherency block was characterized by sequential sharing (CELL and SPICE). Recall

that their average write run lengths were 4.9 and 6.2. Given the breakeven point in the simula­

tions, each trace saved on the average, 2 or 3 broadcasts each time a different processor wrote to

149

I Write-Broadcasts

Trace Cache Size Firefly Competitive Percentage

(Kbvtes) Snooping Change

CELL 16 20402 13199 35.31
CELL 32 26841 15507 42.23
CELL 64 31300 15514 50.43
CELL 128 34287 15212 55.63
CELL 256 35444 15192 57.14
CELL 512 37579 15338 59.18

SPICE 16 12076 4510 62.65
SPICE 32 18555 5900 68.20
SPICE 64 20362 6373 68.70
SPICE 128 22925 7045 69.27
SPICE 256 23344 7251 68.94
SPICE 512 24184 7412 69.35

TOPOPT 16 8918 8218 7.85
TOPOPT 32 9111 8352 8.33
TOPOPT 64 9190 8410 8.49
TOPOPT 128 9244 8458 8.50
TOPOPT 256 9244 8458 8.50
TOPOPT I 512 9244 8458 8.50

VERIFY 16 20589 18091 12.13
VERIFY 32 21726 18835 13.31
VERIFY 64 22914 19097 16.66
VERIFY 128 23476 19107 18.61
VERIFY 256 23719 19330 18.50
VERIFY 512 23719 19330 18.50

Table 6-3: Comparison of Write-Broadcasts for Firefly and Competitive Snooping

This table depicts the decline in the number of write-broadcasts that occured with competitive snooping.

The drop was most pronounced for CELL and SPICE, which had the longest average write run lengths.

Identical values across cache sizes for TOPOPT and VERIFY indicate that their working sets fit into the

caches. (All simulations were run with a 32 byte block.)

a shared address.9 The average write run lengths for TOPOPT and VERIFY were below the

simulator's breakeven point (1.2 and 2.2, respectively). Therefore no broadcast savings was

accrued in most cases.

9 Technically this is true only for the large caches. At smaller cache sizes the savings would be less. See the

discussion on the effect of average write run length on write-broadcast protocols in section 6.4.2.

150

The corresponding decrease in the number of write-broadcast cycles was offset to varying

extents by the additional cycles for invalidation signals and invalidation misses (see Table 6-4).

For CELL and SPICE the effect was to reduce the percentage improvement in cycles consumed

in sharing-related bus operations to 10 to 26 percent for CELL and 49 to 52 percent for SPICE.

Sharing Cvcles
Trace Cache Firefly Competitive Snoopin~ %

Size Write Write Invals. Inval. Total Change

(Kbvtes) Bdcasts. Bdcasts. Misses

CELL 16 167122 108850 24489 17820 151159 9.55

CELL 32 221925 129716 33051 28706 191473 13.72

CELL 64 259327 130740 37395 39140 207275 20.07

CELL 128 285430 129361 40597 51286 221244 22.49

CELL 256 295069 129527 41450 55567 226544 23.22

CELL 512 312668 130360 42849 57944 231153 26.07

SPICE 16 102645 39190 7912 2236 49338 51.93

SPICE 32 158119 51491 13660 12786 77937 50.71

SPICE 64 172139 55384 15115 15168 85667 50.23

SPICE 128 191106 60515 18126 18068 96709 49.40

SPICE 256 193971 61880 18491 18262 98633 49.15

SPICE 512 200782 63020 19076 18907 101003 49.70

TOPO:fYf 16 75828 74927 1603 2655 79185 -4.43

TOPOPT 32 77214 76249 1916 3366 81531 -5.59

TOPOPT 64 77936 76821 1920 3238 81979 -5.19

TOPOPT 128 78256 77120 1942 3380 82442 -5.35

TOPOPT 256 78256 77120 1942 3380 82442 -5.35

TOPOPT 512 78256 77120 1942 3380 82442 -5.35

VERIFY 16 170952 155223 9228 8679 173130 -1.27

VERIFY 32 183516 165910 10798 12157 188865 -2.91
VERIFY 64 194813 170477 12007 15809 198293 -1.79

VERIFY 128 199733 171116 12744 18125 201985 -1.13

VERIFY 256 200341 171961 13323 19132 204416 -2.03

VERIFY 512 200341 171961 13323 19132 204416 -2.03

Table 6-4: Comparison of Sharing Cycles for Firefly and Competitive Snooping

This table depicts the difference in the number of cycles for the sharing-related bus operations for Firefly

and competitive snooping. The decline in write-broadcast cycles is offset by cycles for invalidation sig­

nals and invalidation misses. For TOPOPT and VERIFY the combination of a smaller cycle savings in

write-broadcasts ?nd the additional cycles relatP-d to invalidations produced a net increase in sharing­

related cycles. (All simulations were run with a 32 byte block.)

151

However, the savings was still substantial enough to cause a drop in bus utilization relative to

write-broadcast. The decline in bus utilization for CELL ranged as high as 19 percent; for

SPICE as high as 30 percent For all simulations but two (CELL with 16K and 32K byte

caches) the lower bus utilization produced fewer total execution cycles.

For TOPOPT and VERIFY the smaller decline in write-broadcasts, coupled with the addi-

tional cycles for invalidation signals and invalidation misses, produced an increase in sharing-

related bus cycles. This increase was responsible for a slight rise in their bus utilization figures

over write-broadcast (1.6 to 4.5 percent for TOPOPT and .8 percent at most for VERIFY).

Higher bus utilization brought an increase in total execution cycles. (Details on bus utilization

and total execution cycles appear in Table 6-5.)

6.5.3. Write-Broadcast/Competitive Snooping Summary

The extent to which competitive snooping improves the performance of write-broadcast

depends on the pattern of references to shared data. When sharing is sequential, as exhibited by

relatively longer average write run lengths, the benefit is greatest. Here the savings in write-

broadcast cycles decreases bus utilization and total execution time. As inter-processor conten-

tion for the shared addresses rises, competitive snooping becomes less attractive. The decrease

in write-broadcasts diminishes, and in some cases can be offset by the rise in invalidations and

the more expensive (in numbers of cycles) invalidation misses. The result is an increase in bus

utilization and total execution time. (An alternative argument is that programs with fine-grain-

.
sharing for shared addresses are a good match for write-broadcast protocols. Therefore, they

have less need for competitive snooping, and it consequently provides less benefit.)

6.6. Chapter Summary

This chapter contains two companion studies of bus-based, shared memory cache

coherency protocols. The purpose of each is twofold: first, to measure the performance loss of

152

Bus Utilization & Total Execution Cvcles

Trace Cache Bus Utilization I Total Execution Cvcles I

Size Firefly Com pet. % Firefly Com pet. %

(Kbvtes) Snooping Ch2:. Snoooincr Ch!!.

CELL 16 78.21 78.24 -0.04 2251417 2275472 -1.07

CELL 32 69.65 69.41 0.34 1722507 1726670 -0.24

CELL 64 54.07 51.94 3.95 1367997 1358706 0.68

CELL 128 45.13 41.29 8.49 1267754 1246316 1.69

CELL 256 37.52 32.68 12.90 1196530 1170737 2.16

CELL 512 33.88 27.56 18.67 1156'34 1128079 2.46

SPICE 16 92.66 92.24 0.46 1385228 1344603 2.93

SPICE 32 87.17 86.09 1.24 1078916 1007891 6.58

SPICE 64 79.10 77.34 2.22 886776 795919 10.25

SPICE 128 52.80 43.43 17.74 603795 517028 14.37

SPICE 256 44.06 31.98 27.42 559356 474377 15.19

SPICE 512 44.88 31.38 30.08 553071 474123 14.27

TOPOPT 16 55.55 56.42 -1.56 491294 495603 -0.88

TOPOPT 32 33.89 34.96 -3.13 389304 391695 -0.61

TOPOPT 64 30.76 31.82 -3.43 381349 382676 -0.35

TOPOPT 128 24.68 25.79 -4.51 364345 364798 -0.12

TOPOPT 256 24.68 25.79 -4.51 364345 364798 -0.12

TOPOPT 512 24.68 25.79 -4.51 364345 364798 -0.12

VERIFY 16 99.97 99.97 0.00 1760674 1786211 -1.45

VERIFY 32 97.41 97.58 -0.17 1002740 1017567 -1.48

VERIFY 64 86.24 86.58 -0.39 744443 749358 -0.66

VERIFY 128 78.18 78.25 -0.08 677634 682098 -0.66

VERIFY 256 65.99 66.08 -0.14 617141 622265 -0.83

VERIFY 512 65.99 66.08 -0.14 617141 622265 -0.83

Table 6-5: Comparison of Bus Utilization & Total Execution Cycles

for Firefly and Competitive Snooping

This table depicts the change in the bus utilization and total execution cycles that occured with competi­

tive snooping. The decrease in sharing-related cycles for CELL and SPICE resulted in a decline in both.

And, conversely, the increase in sharing cycles for TOPOPT and VERIFY produced a rise. (All simula­

tions were run with a 32 byte block.)

changing particular cache parameter values on well-known snooping coherency techniques;

second, to determine to wh:1t extent extensions, designed specifically to eliminate deficiencies

in the original protocols, achieve performance improvements. In the first study, read-broadcast

was proposed to eliminate the rise in invalidation misses in write-invalidate protocols that occur

with increasing block size. In the second, competitive snooping was intended to limit the

153

increase in write-broadcasts caused by increasing cache size in write-broadcast coherency proto­

cols.

The results have found that neither extension produces a savings in coherency overhead

across all workloads studied. In those cases in which there was a performance loss, the original

protocol, write-invalidate or write-broadcast, was a good match for the program. Therefore

there was not much room for improvement; and the extension often introduced secondary costs

which outweighed the small savings in coherency overhead. Furthermore, both extensions

required some additional hardware complexity.

The workload used in these studies is characterized by sequential sharing, i.e., data is

shared by very few processors at a time. Therefore read-broadcast reduced the number of

invalidation misses only moderately, and at a high cost in processor lockout from the cache. In

some cases, the net effect was an increase in total execution cycles. These results clearly indi­

cate that read-broadcast is inappropriate for programs with sequential sharing. However, if

more processors had been involved in the sharing, for example, a single-producer, multiple­

consumer situation, read-broadcast would have provided more benefit for a similar cost in pro­

cessor lockout.

Competitive snooping benefits only those programs in which the pattern of reference to

shared data is very sequential. In this case the decline in the number of write-broadcast cycles

is greater than the additional cycles introduced by invalidations and invalidation misses; the net

effect is a drop in bus utilization. However, for programs characterized by fine-grain sharing,

competitive snooping can degrade performance by causing a slight increase in bus utilization

and total execution time. Competitive snooping works well in programs that would have

incurred less coherency overhead with write-invalidate protocols (rather than write-broadcast).

The reason is that it uses invalidations to terminate broadcasts to shared data.

154

6.7. References

[Agar88] A. Agarwal, J. Hennessy and M. Horowitz, "Cache Performance of Operation

System and Multiprogramming Workloads", ACM Transactions on Computer

Systems, 6, 4 (November 1988), 393-431.

[Alex86] C. Alexander, W. Keshlear, F. Cooper and F. Briggs, "Cache Memory

Performance in a UNIX Environment", Computer Architecture News, 14, 3 (June

1986), 14-70.

[Egge89] S. J. Eggers and R. H. Katz, "The Effect of Sharing on the Cache and Bus

Performance of Parallel Programs", Proceedings of the 3rd International

Conference on Architectural Support for Programming Languages and Operating

Systems, Boston MA (April 1989).

[Good87] J. R. Goodman, "Cache Memory Optimization to Reduce Processor/Memory

Traffic", Journal ofVLSI and Computer Systems, 2, 1 & 2 (1987), 61-86.

[Good88] J. R. Goodman and P. J. Woest, "The Wisconsin Multicube: A New Large-Scale

Cache-Coherent Multiprocessor", Proceedings 15th Annual International

Symposium on Computer Architecture, Honolulu HA (May 1988), 422-431.

[Hill87] M. D. Hill, "Aspects of Cache Memory and Instruction Buffer Performance",

Technical Report No. UCB/Computer Science Dpt. 87/381, University of

California, Berkeley (November 1987).

[Karl86] A. R. Karlin, M. S. Manasse, L. Rudolph and D. D. Sleator, ''Competitive Snoopy

Caching", Proceedings of the 27th Annual Symposium on Foundations of

Computer Science, Toronto, Canada (October 1986), 244-254.

[Karl88] A. R. Karlin, M. S. Manasse, L. Rudolph and D. D. Sleator, "Competitive Snoopy

Caching", Algorithmica, 3 (1988), 79-119.

[Sega84] Z. Segall and L. Rudolph, "Dynamic Decentralized Cache Schemes for an MIMD

Parallel Processor", Proceedings of the 11th International Symposium on

Computer Architecture, 12, 3 (June 1984), 340-347.

~Smit87] A. J. Smith, "Line (Block) Size Choice for CPU C :1.es", IEEE Trans. on

Computers, C-36, 9 (September 1987), 1063-1075.

7 Summary and Conclusions

This dissertation has investigated several aspects of the performance of parallel programs

executing on single-bus, shared memory multiprocessors. Memory reference traces of four

parallel programs were first collected, and then analyzed for their amount of write sharing and

the pattern of multiprocessor accesses to the write shared data. Results indicated that the

amount of write sharing, measured in numbers of memory references, was small and that there

was little contention for either data or locks.

A simple model of write sharing was developed, based on the inter-processor sharing

activity to write-shared data. The model was used to predict the relative coherency overhead of

write-invalidate and write-broadcast protocols. Parameter values for the model, both derived

from the sharing analysis and based on the costs of maintaining cache coherency under the two

types of protocols (assuming an implementation similar to SPUR), were applied to the model to

obtain the predictions. Architecturally detailed simulations validated the model (in this

architecture-independent form) for the write-broadcast protocols. However, the model did not

156

accurately predict coherency overhead for write-invalidate. Successive refinements that incor­

porated a few architecture-dependent parameters, the most imponant of which was the size of

the coherency unit. produced acceptable predictions.

Two sets of empirical studies were also completed. The first evaluated the cache and bus

behavior of parallel programs running under write-invalidate protocols over a variety of block

and cache sizes. The analysis determined the effect of coherency overhead on both cache miss

ratio and bus utilization by focusing on the sharing component of these metrics. The sharing

componen: was responsible for the parallel programs having substantially higher miss ratios and

bus utilization than comparable uniprocessor programs. It increased proportionally (relative to

the uniprocessor component) with both block and cache size, and for the larger cache

configuration values determined both the magnitude and trend of the metrics. Miss ratios were

2.2 to 4.7 times greater with increasing cache size for most of the traces, and 15 times ~ater in

the most extreme case. Bus utilization figures were similarly higher, with figures ranging from

30 to 70 percent of available bus cycles. Increasing block size either increased the number of

invalidation misses or decreased them at a rate that was less than for uniprocessor misses. In

the former case the increase was substantial enough to reverse the declining miss ratio trend that

normally occurs with larger block sizes. Again. bus utilization followed suite.

The second set of studies was a cross-protocol comparison. It first provided empirical evi­

dence of the performance loss caused by increasing the block size in write-invalidate protocols

and the cache size in write-broadcast. It then measured the extent to which read broadcast

improved write-invalidate performance and under what situations competitive snooping helped

write-broadcast. The results indicated that read-broadcast reduced the number of invalidation

misses (by 4 to 51 percent), but at a high cost in processor lockout from t.~e cache. The surpris­

ing net effect was an increase in total execution cycles of up to 3.6 percent. Competitive snoop­

ing benefited only those programs in which the pattern of references to shared data was one of

sequential sharing. Both bus utilization and total execution time dropped moderately. For

157

programs characterized by fine-grain sharing, competitive snooping at times degraded perfor­

mance by causing a slight increase in bus utilization and total execution time.

One result was central to all studies: the importance to good cache and bus performance of

the pattern of memory references to write-shared data. When the pattern is one of sequential

sharing, performance, measured by a wide variety of metrics, is better than when the sharing

behavior is characterized by fine-grain sharing.

The duality was evident in several ways. Modeling the pattern of memory references to

shared data was the single most important factor in developing a model of coherency overhead

that was accur;.:.e for both write-invalidate and write-broadcast protocols. The necessity to

include a parameter that represented sharing behavior was noticed when the architecture­

independent form of the model could not be validated for the write-invalidate protocols. Here

the si:?:e of the coherency block in the realistic simulations differed from that in the more

abstract sharing analyses. The memory access pattern to the shared data within the coherency

block dominated the effects of the sharing pattern intrinsic to the program. A savings in

coherency overhead occurred when the memory access pattern exhibited sequential sharing; and

additional coherency cycles resulted with fine-grain sharing. (Under write-broadcast the prob­

lem was not apparent, because the size of the coherency block matched the one-word unit of

access in the architecture-independent model.)

The pattern of memory references to shared data was depicted in the sharing model by a

parameter for the size of the coherency unit. Simulations that produced- model predictions

could then track shared memory reference behavior to addresses within the coherency unit as a

whole, which more accurately mimics write-invalidate protocol behavior. Incorporating this

single parameter into the otherwise architecture-independent model produced results that more

accurately predicted coherency overhead in write-invalidate protocols. The improvements

ranged from a factor of 4.8 to 52.7, depending on the trace. They brought the model's predic-

158

tions of coherency overhead within 2 to 8 percent of architecturally detailed simulation values.

Sharing behavior was also pivotal in the empirical studies of the cache and bus behavior

of parallel programs. For the programs analyzed, the amount of sharing overhead and therefore

the coherency cost in terms of miss ratios and bus utilization, depended on the intra-block

memory reference pattern for shared data. Invalidation signals in programs with sequential

sharing declined with increasing block size, producing a falling miss ratio; bus utilization also

fell with increasing block size, and the proportion of sharing-related bus cycles to total bus

cycles was less than for programs with fine-grain sharing. Programs that exhibited fine-grain

sharing had the opposite behavior. Invalidation misses rose with increasing block size; and

since they comprised the majority of total misses (a larger component than for programs with

sequential sharing), their miss ratios rose. Bus utilization also followed suite, and quite sharply.

The divergent memory reference behavior was also apparent with increasing cache size.

Miss ratios and bus utilization of programs with sequential sharing were much more responsive

to increases in cache size than those whose behavior was characterized by fine-grain sharing.

For both memory reference patterns the metrics declined with cache size, but the decline was

sharper for the better behaved programs. The proportion of sharing-related bus cycles to total

bus cycles was greater with fine-grain than sequential sharing; their magnitude was responsible

for the insensativity of bus utilization to changes in cache size for programs with intra­

coherency block contention.

Sharing program behavior was important in the studies that compared write-broadcast and

competitive snooping protocols. Write-broadcast protocols were designed to perform well

when there was contention for shared data. Studies in this dissertation indicated that they met

tJ1is goal. For all cache sizes studied (16K to 512K bytes), progran1s with fine-grain sharing

issued fewer broadcasts than those with sequential sharing. However, whether the better broad­

cast performance resulted in lower bus utilization depended on the uniprocessor behavior (i.e.,

159

uniprocessor bus traffic) of the programs. Therefore the lower coherency costs of fine-grain

sharing did not always translate into better overall perfonnance.

The competitive snooping protocol only benefited those programs with sequential sharing

patterns. For these programs the invalidation feature reduced the number of broadcasts up to 70

percent, several times more than for programs characterized by fine-grain sharing. The reduc­

tion in broadcasts resulted in lower bus utilization and total execution time. For programs

characterized by fine-grain sharing, competitive snooping degraded performance, causing a

slight increase in both bus utilization and total execution time.

In summary, programs that exhibited sequential sharing produced less coherency overhead

in multiple studies, for all metrics and across all block and cache sizes. The results clearly

demonstrate the advisability of devising techniques to deliberately allocate shared data in such a

way as to produce an inter-processor memory reference pattern characterized by sequential

sharing. This dissertation has suggested two alternatives for shared data reorganization. The

first involves the explicit programmer specification of data that is used by differem processors,

and runtime support for its allocation in shared memory on cache block boundaries. The tech­

nique is a straightforward solution for reducing coherency bus traffic, but places the responsibil­

ity for optimal runtime memory usage of shared variables entirely on the programmer. The

second approach relies on the automatic compiler detection and subsequent memory allocation

of per-processor shared variables. The problem is difficult, because the compiler must analyze

references to pointers rather than discrete variables. The technique would free the programmer

from having to reorganize shared data, but at considerable software complexity. At this point

no solutions have been found.

The success of the memory reorganization approach may be hindered by constraints in the

semantics of the underlying algorithm. For example, the algorithm may generate inter­

processor comention for data and the number of processors may be quite large. Allocating the

160

data to separate cache blocks would not eliminate multiple invalidations and invalidation

misses. For these cases a different approach should be taken. One promising technique is to

generate, again via the compiler, different coherency code, depending on the processor usage of

the shared data. Invalidations would be issued when program behavior is one of sequential

sharing, and broadcasts when it exhibits fine-grain sharing. Both compiler approaches are areas

of future research.

